As of now, the nuclear fission is the most feasible energy source for human use. All the nuclear power plants are based on the controlled nuclear fission reaction, where the unstable nucleus is bombarded with high speed neutrons, thus, splitting the nucleus into stable ones and releasing huge amount of energy. The nuclear fusion requires very high temperature, the temperature equal's to that of the sun. Hence, it is not feasible right now. As the technology advances, we will see advancement in other form of energies.
Answer:
1) positive
2) carbocation
3) most stable
4) faster
Explanation:
A common test for the presence of alcohols can be achieved using the Lucas reagent. Lucas reagent is a mixture of concentrated hydrochloric acid and zinc chloride.
The reaction of Lucas reagent reacts with alcohols leading to the formation of an alkyl chloride. Since the reaction proceeds via a carbocation mechanism, tertiary alcohols give an immediate reaction. Once a tertiary alcohol is mixed with Lucas reagent, the solution turns cloudy almost immediately indicating an instant positive reaction.
Secondary alcohols may turn cloudy within five minutes of mixing the solutions. Primary alcohols do not significantly react with Lucas reagent obviously because they do not form stable carbocations.
Therefore we can use the Lucas reagent to distinguish between primary, secondary and tertiary alcohols.
Answer:
Equilibrium is the state of balance. Where opposing forces cancel each other out and no changes are occurring.
<em>Good luck, hope this helps :)</em>
In order to help the
student expand his/her knowledge I will help answer the question. This in hope
that the student will get a piece of knowledge that will help him/her through his/her homework or future tests. The ________ have a single electron in the highest
occupied energy level. The missing word to complete this statement and make it
true is Alkali Metals.
<span>
I hope it helps,
Regards.</span>
From the periodic table you know that Cl has a molar mass of 35.35 g/m. So if you just set up the dimensional analysis as so: (.46 moles Cl)*(35.45 grams Cl/1 mole Cl) and multiply out you get 16 grams of Cl if you follow the sig figs and 16.307 if you don't.