To develop this problem it is necessary to apply the concepts given in the balance of forces for the tangential force and the centripetal force. An easy way to detail this problem is through a free body diagram that describes the behavior of the body and the forces to which it is subject.
PART A) Normal Force.


Here,
Normal reaction of the ring is N and velocity of the ring is v




PART B) Acceleration





Negative symbol indicates deceleration.
<em>NOTE: For the problem, the graph in which the turning radius and the angle of suspension was specified was not supplied. A graphic that matches the description given by the problem is attached.</em>
Answer:
Red shift supports the big bang theory. ... The light from distant galaxies is red shifted (this tells us the galaxies are moving away from us) and the further away the galaxy the greater the red shift (this tells us that the more distant the galaxy the faster it is moving). Constellations look like they are moving because earth is rotating on it's axis.
May I have brainliest, please?
Answer:
Option (2)
Explanation:
From the figure attached,
Horizontal component, 
![A_x=12[\text{Sin}(37)]](https://tex.z-dn.net/?f=A_x%3D12%5B%5Ctext%7BSin%7D%2837%29%5D)
= 7.22 m
Vertical component, ![A_y=A[\text{Cos}(37)]](https://tex.z-dn.net/?f=A_y%3DA%5B%5Ctext%7BCos%7D%2837%29%5D)
= 9.58 m
Similarly, Horizontal component of vector C,
= C[Cos(60)]
= 6[Cos(60)]
= 
= 3 m
![C_y=6[\text{Sin}(60)]](https://tex.z-dn.net/?f=C_y%3D6%5B%5Ctext%7BSin%7D%2860%29%5D)
= 5.20 m
Resultant Horizontal component of the vectors A + C,
m
= 4.38 m
Now magnitude of the resultant will be,
From ΔOBC,

= 
= 
= 6.1 m
Direction of the resultant will be towards vector A.
tan(∠COB) = 
= 
= 
m∠COB = 
= 46°
Therefore, magnitude of the resultant vector will be 6.1 m and direction will be 46°.
Option (2) will be the answer.
The ironwood will because it it more heavy and the others are not
The higher the amount is the more possible it is to sink
Hope this helped
I have no idea what that is, but all of your answers right