Answer:
30 m/s
Explanation:
Speed is distance over time. 60 meters / 2 seconds, = 30 m/s.
Answer:
due to the magnetic field
Explanation:
magnetic field is the same in the vacuum
Answer:
T_ww = 43,23°C
Explanation:
To solve this question, we use energy balance and we state that the energy that enters the systems equals the energy that leaves the system plus losses. Mathematically, we will have that:
E_in=E_out+E_loss
The energy associated to a current of fluid can be defined as:
E=m*C_p*T_f
So, applying the energy balance to the system described:
m_CW*C_p*T_CW+m_HW*C_p*T_HW=m_WW*C_p*T_WW+E_loss
Replacing the values given on the statement, we have:
1.0 kg/s*4,18 kJ/(kg°C)*25°C+0.8 kg/s*4,18 kJ/(kg°C)*75°C=1.8 kg/s*4,18 kJ/(kg°C)*T_WW+30 kJ/s
Solving for the temperature Tww, we have:
(1.0 kg/s*4,18 kJ/(kg°C)*25°C+0.8 kg/s*4,18 kJ/(kg°C)*75°C-30 kJ/s)/(1.8 kg/s*4,18 kJ/(kg°C))=T_WW
T_WW=43,23 °C
Have a nice day! :D
Answer:
Two times as much
Explanation:
The equation for gravitational force is: Fg = GMm/r^2 with G being the universal gravitational constant.
So to make things easier we'll set r equal to 1 since it's a constant as well as G.
Then we're left with Fg=Mm with M being the mass of the sun and m being the mass of the earth.
So if m is constant and supposedly equals 1 then Fg=M so Fg is proportional to M therefore if M doubles then Fg doubles.
I think they decrease echo and reduce noise, they do this by either absorbing vibrations or by scattering the sound so that echoes arrive at different times rather than reverberating as a standing wave. An echo is a reflection of a sound that arrives at the listener with a delay after the direct sound. The delay is usually proportional to the distance of the reflecting surface from the source and the listener.