Magnetic field direction is given by right hand thumb rule.
If we put our thumb in the direction of current then curl of fingers will show the magnetic field direction around the wire.
Now here since current is going into the screen so we will put our thumb into the screen and then the curl of fingers is clockwise around it.
The magnetic field is clockwise.
So this would be the direction of magnetic field
Here,
height at failure, h1 = 525 m,
upward acceleration, a = 2.25 m/s^2,
velocity = v m/s,
<span>
SO, </span>
<span>
v^2 = 2*a*h = 2*2.25*525 = 2362.5 </span>
Now, acceleration, g = 9.8 m/s^2,
<span>
SO, </span>
<span>
heigt, h1 = v^2/2g = 2362.5 / 2*9.8 = 120.54 meters </span>
Hence,
<span>
a) </span>
Total height = 525+120.54 = 645.54 meters
b)
<span>time, for h1, t = v/g = sqrt(2362.5)/9.8 = 4.96 sec
---------------------------------
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!</span>
The weight of the meterstick is:

and this weight is applied at the center of mass of the meterstick, so at x=0.50 m, therefore at a distance

from the pivot.
The torque generated by the weight of the meterstick around the pivot is:

To keep the system in equilibrium, the mass of 0.50 kg must generate an equal torque with opposite direction of rotation, so it must be located at a distance d2 somewhere between x=0 and x=0.40 m. The magnitude of the torque should be the same, 0.20 Nm, and so we have:

from which we find the value of d2:

So, the mass should be put at x=-0.04 m from the pivot, therefore at the x=36 cm mark.
The use of drugs to treat disease is called medication