I’m imagining imagining imagining an imagination...
Below is the solution:
Heat soda=heat melon
<span>m1*cp1*(t-t1)=m2*cp2*(t2-t); cp2=cpwater </span>
<span>12*0.35*3800*(t-5)=6.5*4200*(27-t) </span>
<span>15960(t-5)=27300(27-t) </span>
<span>15960t-136500=737100-27300t </span>
<span>43260t=873600 </span>
<span>t=873600/43260 </span>
<span>t=20.19 deg celcius</span>
Answer:3.4 seconds
Explanation:
Initial velocity(u)=0
acceleration=34.5m/s^2
Height(h)=200m
Time =t
h=u x t - (gxt^2)/2
200=0xt+(34.5xt^2)/2
200=34.5t^2/2
Cross multiply
200x2=34.5t^2
400=34.5t^2
Divide both sides by 34.5
400/34.5=34.5t^2/34.5
11.59=t^2
t^2=11.59
Take them square root of both sides
t=√(11.59)
t=3.4 seconds
Answer:
Weight on Earth = We = 186.2 N
Weight on Mars = Wm = 70.94 N
Explanation:
The weight of an object is defined as the force applied on the object by the gravitational field. The magnitude of weight is given by the following formula:
W = mg
were,
W= Weight of Eric
m = mass of Eric
g = acceleration due to gravity
ON EARTH:
W = We = Eric's Weight on Earth = ?
m = Eric's Mass on Earth = 19 kg
ge = acceleration due to gravity on Earth = 9.8 m/s²
Therefore,
We = (19 kg)(9.8 m/s²)
<u>We = 186.2 N</u>
<u></u>
ON MARS:
W = Wm = Eric's Weight on Mars = ?
m = Eric's Mass on Mars = 19 kg
gm = acceleration due to gravity on Mars = 0.381(ge) = (0.381)9.8 m/s² = 3.733 m/s²
Therefore,
Wm = (19 kg)(3.733 m/s²)
<u>Wm = 70.94 N</u>