Answer:
1461.7 g of AgI
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
CaI₂ + 2AgNO₃ —> 2AgI + Ca(NO₃)₂
From the balanced equation above,
1 mole of CaI₂ reacted to produce 2 moles of AgI.
Next, we shall determine the number of mole AgI produced by the reaction of 3.11 moles of CaI₂. This can be obtained as follow:
From the balanced equation above,
1 mole of CaI₂ reacted to produce 2 moles of AgI.
Therefore, 3.11 moles of CaI₂ will react to produce = 3.11 × 2 = 6.22 moles of AgI
Finally, we shall determine the mass of 6.22 moles of AgI. This can be obtained as follow:
Mole of AgI = 6.22 moles
Molar mass of AgI = 108 + 127
= 235 g/mol
Mass of AgI =?
Mass = mole × molar mass
Mass of AgI = 6.22 × 235
Mass of AgI = 1461.7 g
Therefore, 1461.7 g of AgI were obtained from the reaction.
Answer:
Explanation:
Calcium is all around us. The average human contains approximately 1kg of calcium, of which 99% is stored in our bones. It is the 5th most abundant element in the earth's crust, occurring widely as calcium carbonate which is more commonly known as limestone. It is also the fifth most abundant dissolved ion in seawater.
Answer:
a)Atomic number
Explanation:
Element symbol signifies the element. For eg, Na is sodium. Mass number is the sum of protons and neutrons of an atom of an element. Atomic mass is the molar mass of the given element. Finally, atomic number is unique to each element because it signifies the number of protons of that element. EACH ELEMENT has their UNIQUE number of protons. For eg, atomic number of hydrogen is 1 because it has 1 proton, NO OTHER ELEMENT HAS ATOMIC NUMBER 1 because NO OTHER ELEMENT HAS 1 proton.
That would be A.
2.5*2*10^(10-7)=5*10^3
C.) Action force unless it has potential/stored enerygy