Answer:
The work done is 205 kJ.
Explanation:
Hi there!
Work can be calculated using the following equation:
W = F · Δx
Where:
W = work
F = applied force
Δx = displacement
In this case, the force varies with the position, so we can divide the traveled distance in very small parts and calculate the work done over each part of the trajectory. Then, we have to sum all the works and we will obtain the work done from the initial position (xi) to the final position (xf). This is the same as saying:
W = ∫ F · dx
F = 3.6 N/m³ · x³ - 76 N
W = ∫ (3.6 x³ - 76)dx
W = 0.9 x⁴ - 76x
Evaluating from xi to xf:
W = 0.9 N/m³ (21.9 m)⁴ - 76 N · 21.9 m - 0.9 N/m³(5.41 m)⁴ + 76 N · 5.41 m
W = 205 kJ
Answer:
Explanation:
Part 0
All the spring moves is 2 cm
x = 2 cm * [1 m / 100 cm ]
x = 0.020 meters
F = k*d
100N = k * 0.02 m
100 N / 0.02 = k
5000 N / m
Part A
The spring feels a force of 100 N - - 100N = 200 N because each person is pulling in the opposite direction.
F = k * x
200N = 5000 N/m * d
200 / 5000 = d
d = 0.04 meters.
Part B
10.2 kg must be converted to a force as experienced here on earth.
F = m * g
g = 9.81
m = 10.2
F = 10.2 * 9.81
F = 100.06 N
F = k * d
100.06 = 5000 * d
d = 100.06 / 5000
d = 0.02 meters.
Answer:
4.0 m/s
Explanation:
The motion of the diver is the motion of a projectile: so we need to find the horizontal and the vertical component of the initial velocity.
Let's consider the horizontal motion first. This motion occurs with constant speed, so the distance covered in a time t is

where here we have
d = 3.0 m is the horizontal distance covered
vx is the horizontal velocity
t = 1.3 s is the duration of the fall
Solving for vx,

Now let's consider the vertical motion: this is an accelerated motion with constant acceleration g=9.8 m/s^2 towards the ground. The vertical position at time t is given by

where
h = 4.0 m is the initial height
vy is the initial vertical velocity
We know that at t = 1.3 s, the vertical position is zero: y = 0. Substituting these numbers, we can find vy

So now we can find the magnitude of the initial velocity:

Answer:
Distance = 345719139.4[m]; acceleration = 3.33*10^{19} [m/s^2]
Explanation:
We can solve this problem by using Newton's universal gravitation law.
In the attached image we can find a schematic of the locations of the Earth and the moon and that the sum of the distances re plus rm will be equal to the distance given as initial data in the problem rt = 3.84 × 108 m
![r_{e} = distance earth to the astronaut [m].\\r_{m} = distance moon to the astronaut [m]\\r_{t} = total distance = 3.84*10^8[m]](https://tex.z-dn.net/?f=r_%7Be%7D%20%3D%20distance%20earth%20to%20the%20astronaut%20%5Bm%5D.%5C%5Cr_%7Bm%7D%20%3D%20distance%20moon%20to%20the%20astronaut%20%5Bm%5D%5C%5Cr_%7Bt%7D%20%3D%20total%20distance%20%3D%203.84%2A10%5E8%5Bm%5D)
Now the key to solving this problem is to establish a point of equalisation of both forces, i.e. the point where the Earth pulls the astronaut with the same force as the moon pulls the astronaut.
Mathematically this equals:

![F_{m} =G*\frac{m_{m}*m_{a} }{r_{m} ^{2} } \\where:\\G = gravity constant = 6.67*10^{-11}[\frac{N*m^{2} }{kg^{2} } ] \\m_{e}= earth's mass = 5.98*10^{24}[kg]\\ m_{a}= astronaut mass = 100[kg]\\m_{m}= moon's mass = 7.36*10^{22}[kg]](https://tex.z-dn.net/?f=F_%7Bm%7D%20%3DG%2A%5Cfrac%7Bm_%7Bm%7D%2Am_%7Ba%7D%20%20%7D%7Br_%7Bm%7D%20%5E%7B2%7D%20%7D%20%5C%5Cwhere%3A%5C%5CG%20%3D%20gravity%20constant%20%3D%206.67%2A10%5E%7B-11%7D%5B%5Cfrac%7BN%2Am%5E%7B2%7D%20%7D%7Bkg%5E%7B2%7D%20%7D%20%5D%20%5C%5Cm_%7Be%7D%3D%20earth%27s%20mass%20%3D%205.98%2A10%5E%7B24%7D%5Bkg%5D%5C%5C%20m_%7Ba%7D%3D%20astronaut%20mass%20%3D%20100%5Bkg%5D%5C%5Cm_%7Bm%7D%3D%20moon%27s%20mass%20%3D%207.36%2A10%5E%7B22%7D%5Bkg%5D)
When we match these equations the masses cancel out as the universal gravitational constant

To solve this equation we have to replace the first equation of related with the distances.

Now, we have a second-degree equation, the only way to solve it is by using the formula of the quadratic equation.
![r_{m1,2}=\frac{-b+- \sqrt{b^{2}-4*a*c } }{2*a}\\ where:\\a=80.25\\b=768*10^{6} \\c = -1.47*10^{17} \\replacing:\\r_{m1,2}=\frac{-768*10^{6}+- \sqrt{(768*10^{6})^{2}-4*80.25*(-1.47*10^{17}) } }{2*80.25}\\\\r_{m1}= 38280860.6[m] \\r_{m2}=-2.97*10^{17} [m]](https://tex.z-dn.net/?f=r_%7Bm1%2C2%7D%3D%5Cfrac%7B-b%2B-%20%5Csqrt%7Bb%5E%7B2%7D-4%2Aa%2Ac%20%7D%20%20%7D%7B2%2Aa%7D%5C%5C%20%20where%3A%5C%5Ca%3D80.25%5C%5Cb%3D768%2A10%5E%7B6%7D%20%5C%5Cc%20%3D%20-1.47%2A10%5E%7B17%7D%20%5C%5Creplacing%3A%5C%5Cr_%7Bm1%2C2%7D%3D%5Cfrac%7B-768%2A10%5E%7B6%7D%2B-%20%5Csqrt%7B%28768%2A10%5E%7B6%7D%29%5E%7B2%7D-4%2A80.25%2A%28-1.47%2A10%5E%7B17%7D%29%20%7D%20%20%7D%7B2%2A80.25%7D%5C%5C%5C%5Cr_%7Bm1%7D%3D%2038280860.6%5Bm%5D%20%5C%5Cr_%7Bm2%7D%3D-2.97%2A10%5E%7B17%7D%20%5Bm%5D)
We work with positive value
rm = 38280860.6[m] = 38280.86[km]
<u>Second part</u>
<u />
The distance between the Earth and this point is calculated as follows:
re = 3.84 108 - 38280860.6 = 345719139.4[m]
Now the acceleration can be found as follows:
![a = G*\frac{m_{e} }{r_{e} ^{2} } \\a = 6.67*10^{11} *\frac{5.98*10^{24} }{(345.72*10^{6})^{2} } \\a=3.33*10^{19} [m/s^2]](https://tex.z-dn.net/?f=a%20%3D%20G%2A%5Cfrac%7Bm_%7Be%7D%20%7D%7Br_%7Be%7D%20%5E%7B2%7D%20%7D%20%5C%5Ca%20%3D%206.67%2A10%5E%7B11%7D%20%2A%5Cfrac%7B5.98%2A10%5E%7B24%7D%20%7D%7B%28345.72%2A10%5E%7B6%7D%29%5E%7B2%7D%20%20%7D%20%5C%5Ca%3D3.33%2A10%5E%7B19%7D%20%5Bm%2Fs%5E2%5D)
Answer:
57,42 KJ
Explanation:
By a isobaric proces, the expresion for the works in the jpg adjunt. Then:
W = Pa(Vb - Va) = Pa*Vb - Pa*Va ---(1)
By the ideal gases law: PV=RTn
Then, in (1): (remember Pa = Pb)
W = R*Tb*n - R*T*an = R*n*(Tb - Ta) --- (2)
Since we have 1 Kg air: How much is this in moles?
From bibliography: 28.96 g/mol
Then, in 1 Kg (1000 g) there are:
n = 34,53 mol
Finally, in (2):
W = (8,3144 J/K.mol)*(34,53 mol)*(500K - 300K) = 51 419,9 J ≈ 57,42 KJ