Because the gravitational force, which points downward, is perfectly balanced by the normal reaction of the floor of the bowling lane, which points upward. The two forces are equal in magnitude, so the net force acting vertically on the bowling ball is zero, therefore there is no acceleration along this direction. Moreover, since the ball is moving in the horizontal direction, the gravitational force has no component along this direction, so it does not change the velocity of the ball.
Answer:
The average linear velocity (inches/second) of the golf club is 136.01 inches/second
Explanation:
Given;
length of the club, L = 29 inches
rotation angle, θ = 215⁰
time of motion, t = 0.8 s
The angular speed of the club is calculated as follows;

The average linear velocity (inches/second) of the golf club is calculated as;
v = ωr
v = 4.69 rad/s x 29 inches
v = 136.01 inches/second
Therefore, the average linear velocity (inches/second) of the golf club is 136.01 inches/second
Answer:

Explanation:
The process during which pressure remains constant is called an isobaric process.
Answer:
A wire carrying a 30.0-A current passes between the poles of a strong magnet that is perpendicular to its field and experiences a 2.16-N force on the 4.00 cm of wire in the field. What is the average field strength?
Explanation:
hope this helps trying to be brainliest
Answer:
The magnetic field will be
, '2d' being the distance the wires.
Explanation:
From Biot-Savart's law, the magnetic field (
) at a distance '
' due to a current carrying conductor carrying current '
' is given by

where '
' is an elemental length along the direction of the current flow through the conductor.
Using this law, the magnetic field due to straight current carrying conductor having current '
', at a distance '
' is given by

According to the figure if '
' be the current carried by the top wire, '
' be the current carried by the bottom wire and '
' be the distance between them, then the direction of the magnetic field at 'P', which is midway between them, will be perpendicular towards the plane of the screen, shown by the
symbol and that due to the bottom wire at 'P' will be perpendicular away from the plane of the screen, shown by
symbol.
Given
and 
Therefore, the magnetic field (
) at 'P' due to the top wire

and the magnetic field (
) at 'P' due to the bottom wire

Therefore taking the value of
the net magnetic field (
) at the midway between the wires will be
