The distance traveled by the particle at the given time interval is 0.28 m.
<h3>
Position of the particle at time, t = 0</h3>
The position of the particle at the given time is calculated as follows;
x = 2 sin2(t)
y = 2 cos2(t)
x(0) = 2 sin2(0) = 0
y(0) = 2 cos2(0) = 2(1) = 2
<h3>
Position of the particle at time, t = 4</h3>
x = 2 sin2(t)
y = 2 cos2(t)
x(4) = 2 sin2(4) = 0.28
y(4) = 2 cos2(4) = 2(1) = 1.98
<h3>Distance traveled by the particle at the given time interval</h3>
d = √[(x₄ - x₀)² + (y₄ - y₀)²]
d = √[(0.28 - 0)² + (1.98 - 2)²]
d = 0.28 m
Thus, the distance traveled by the particle at the given time interval is 0.28 m.
Learn more about distance here: brainly.com/question/23848540
#SPJ1
<h2>Answer:</h2>
The correct option is A.
A) The increased pressure, pushed the molecules closer together, and caused the marshmallow to shrink.
<h2>Explanation:</h2>
Jayden experimented, she placed the marshmallow in the syringe and sealed the end. When she depressed the plunger of the syringe, the pressure increased and pushed the molecules closer together and causes the marshmallow to shrink.
<h2 />
Answer:
1.85c
Explanation:
a photon moves at c, the electron is moving at 0.85c, and since they are moving in opposing directions, the relative speed would be 1.85c