Answer:
500 kg
Explanation:
It is given that,
The mass of a open train car, M = 5000 kg
Speed of open train car, V = 22 m/s
A few minutes later, the car’s speed is 20 m/s
We need to find the mass of water collected in the car. It is based on the conservation of momentum as follows :
initial momentum = final momentum
Let m is final mass
MV=mv

Water collected = After mass of train - before mass of train
= 5500 - 5000
= 500 kg
So, 500 kg of water has collected in the car.
The current flowing in silicon bar is 2.02
10^-12 A.
<u>Explanation:</u>
Length of silicon bar, l = 10 μm = 0.001 cm
Free electron density, Ne = 104 cm^3
Hole density, Nh = 1016 cm^3
μn = 1200 cm^2 / V s
μр = 500 cm^2 / V s
The total current flowing in the bar is the sum of the drift current due to the hole and the electrons.
J = Je + Jh
J = n qE μn + p qE μp
where, n and p are electron and hole densities.
J = Eq (n μn + p μp)
we know that E = V / l
So, J = (V / l) q (n μn + p μp)
J = (1.6
10^-19) / 0.001 (104
1200 + 1016
500)
J = 1012480
10^-16 A / m^2.
or
J = 1.01
10^-9 A / m^2
Current, I = JA
A is the area of bar, A = 20 μm = 0.002 cm
I = 1.01
10^-9
0.002 = 2.02
10^-12
So, the current flowing in silicon bar is 2.02
10^-12 A.
The work done to pull the sled up to the hill is given by

where
F is the intensity of the force
d is the distance where the force is applied.
In our problem, the work done is

and the distance through which the force is applied is

, so we can calculate the average force by re-arranging the previous equation and by using these data:
Answer: Both cannonballs will hit the ground at the same time.
Explanation:
Suppose that a given object is on the air. The only force acting on the object (if we ignore air friction and such) will be the gravitational force.
then the acceleration equation is only on the vertical axis, and can be written as:
a(t) = -(9.8 m/s^2)
Now, to get the vertical velocity equation, we need to integrate over time.
v(t) = -(9.8 m/s^2)*t + v0
Where v0 is the initial velocity of the object in the vertical axis.
if the object is dropped (or it only has initial velocity on the horizontal axis) then v0 = 0m/s
and:
v(t) = -(9.8 m/s^2)*t
Now, if two objects are initially at the same height (both cannonballs start 1 m above the ground)
And both objects have the same vertical velocity, we can conclude that both objects will hit the ground at the same time.
You can notice that the fact that one ball is fired horizontally and the other is only dropped does not affect this, because we only analyze the vertical problem, not the horizontal one. (This is something useful to remember, we can separate the vertical and horizontal movement in these type of problems)
Answer:
<u>Electromagnetic introduction</u> is the production of an electromotive force (voltage) across an electrical conductor in a changing magnetic field.
- <em><u>Step up transformers</u></em><u> is</u> a transformer in which the output (secondary) voltage is greater than its input (primary) voltage is called a step-up transformer. The step-up transformer decreases the output current for keeping the input and output power of the system equal.
- <u><em>Step down transformer is </em></u><em>a transformer in which the output (secondary) voltage is less than its input (primary) voltage is called a step-down transformer. The number of turns on the primary of the transformer is greater than the turn on the secondary of the transformer.</em>
<em />
<u>The difference between them:</u>
A transformer is a static device which transfers a.c electrical power from one circuit to the other at the same frequency, but the voltage level is usually changed. For economical reasons, electric power is required to be transmitted at high voltage whereas it has to be utilized at low voltage from a safety point of view. This increase in voltage for transmission and decrease in voltage for utilization can only be achieved by using a step-up and step-down transformer.
Hopefully this helped.