If you were given distance & period of time, you would be able to calculate the speed.
Hope this helps!
I think it’s c because the other ones are just options not facts
Answer:
hmax = 1/2 · v²/g
Explanation:
Hi there!
Due to the conservation of energy and since there is no dissipative force (like friction) all the kinetic energy (KE) of the ball has to be converted into gravitational potential energy (PE) when the ball comes to stop.
KE = PE
Where KE is the initial kinetic energy and PE is the final potential energy.
The kinetic energy of the ball is calculated as follows:
KE = 1/2 · m · v²
Where:
m = mass of the ball
v = velocity.
The potential energy is calculated as follows:
PE = m · g · h
Where:
m = mass of the ball.
g = acceleration due to gravity (known value: 9.81 m/s²).
h = height.
At the maximum height, the potential energy is equal to the initial kinetic energy because the energy is conserved, i.e, all the kinetic energy was converted into potential energy (there was no energy dissipation as heat because there was no friction). Then:
PE = KE
m · g · hmax = 1/2 · m · v²
Solving for hmax:
hmax = 1/2 · v² / g
Answer:
towards west
Explanation:
As we know that the speed of the blue car as appear to the bicycle rider is given as
towards west
also it is given that bicycle is moving at speed of 10 km/h towards East
so here we have

so we have

towards west
now speed of the red car is given as 15 km/h towards west
so here the relative speed of blue car with respect to red car is given as

towards west