Answer:
Assume that
;
.
Density of the disk: approximately
.
Weight of the disk: approximately
.
Buoyant force on the disk if it is submerged under water: approximately
.
The disk will sink when placed in water.
Explanation:
Convert the dimensions of this disk to SI units:
- Diameter:
. - Thickness
.
The radius of a circle is 1/2 its diameter:
.
Volume of this disk:
.
Density of this disk:
.
indicates that the disk will sink when placed in water.
Weight of the object:
.
The buoyant force on an object in water is equal to the weight of water that this object displaces. When this disk is submerged under water, it will displace approximately
of water. The buoyant force on the disk will be:
.
The size of this disk's weight is greater than the size of the buoyant force on it when submerged under water. As a result, the disk will sink when placed in water.
It is radiation that transfers heat energy through space by electro radiation.
a) The motion along the vertical direction and the motion along the horizontal direction.
b) The object remains in the air for a time period of 2usin(θ)/g.
Any object that is thrown in the air when gravity is acting on it is called a projectile. The motion of this projectile is called projectile motion.
When the projectile is thrown in the air at some angle θ, then there are two independent motions taking place at the same time. First is the component of motion along the vertical direction along which gravity acts. Second is the component of motion along the horizontal direction along which the object moves with a constant velocity. No force acts along the horizontal direction. The horizontal motion does not affect the vertical motion and the converse is also true. So these are independent of each other.
The time of flight is the time during which a projectile remains in the air. This time of flight is calculated using the formula,
T=2usin(θ)/g
where T is the time of flight, u is the initial velocity and g is the acceleration due to gravity.
Hence, the object remains in the air for a time period of 2usin(θ)/g.
Learn more about projectile.
brainly.com/question/11049671
#SPJ4
Answer:
False
Explanation:
The steel ball and the wooden ball do not have the same force acting on them because their masses are different. But, they have the same acceleration which is the acceleration due to gravity g = 9.8 m/s².
Using the equation of motion under freefall, s = ut +1/2gt². Since u = 0,
s = 1/2gt² ⇒ t = √(2s/g)
Since. s = height is the same for both objects, they land at the same time neglecting air resistance.
UP gaining potential
Down Gaining Kinetic