Efficiency = (useful output) / (input)
Efficiency = (35 J) / (125 J) = 0.28 = 28%
Answer:
F = -4567.40 N
Explanation:
Given that,
The power developed by the engine, P = 196 hp
1 hp = 746 W
196 hp = 146157 W
Speed of the car, v = 32 m/s
Let F is the total friction force acting on the car. The product of force and velocity is called the power developed by the engine. It is given by :



F = -4567.40 N
So, the total frictional force acting on the car is 4567.40 N. Hence, this is the required solution.
The time of motion of the track star is determined as 0.837 s.
<h3>Time of motion of the track star</h3>
The time of motion of the track star is calculated as follows;
T = (2u sinθ)/g
where;
- T is time of motion
- g is acceleration due to gravity
- θ is angle of projection
T = (2 x 12 x sin20)/9.8
T = 0.837 s
Learn more about time of motion here: brainly.com/question/2364404
#SPJ1
Answer:
a) V = 195.70 m/s
b) f=3.02 × 10⁻⁴ Hz
c) T = 3311.25 seconds
Explanation:
Given:
Wavelength, λ = 646 Km = 646000 m
Distance traveled = 3410 Km = 3410000 m
Time = 4.84 h = 4.84 × 3600 s = 17424 seconds
a) The speed (V) of the wave is given as
V = distance / time
V = 3410000 m/ 17424 seconds
or
V = 195.70 m/s
b) The frequency (f) of the wave is given as:
f = V / λ
f= 195.70 / 646000
f=3.02 × 10⁻⁴ Hz
c) The time period (T) is given as:
T = 1/ f
T = 1/ (3.02 × 10⁻⁴) Hz
T = 3311.25 seconds
The relationship between the two is that air temperature changes the air pressure. For example, as the air warms up the molecules in the air become more active and they use up more individual space even though there is the same<span> number of molecules. This causes an </span>increase<span> in the air pressure.</span>