Answer:
No, CCl₄ is 4 covalent C-Cl single bonds with a Tetrahedral geometry.
Explanation:l
For resonance structures to exist the molecule must have alternating single-double bonds. H₂C = CH - CH₃ <=> H₃C - CH = CH₂ resents a simple compound with a resonance structure system. This means that the π-bond electrons are distributed across all carbons in the molecular backbone. I would recommend internet searching for Danial Weeks 'Pushing Electrons' for a comprehensive review of molecular resonance structures. It is a brief, but easy to follow treatment of simple to complex structures containing resonance systems.
Hope this helps. Doc :-)
Answer:
False.
Explanation:
The chemical hazard label with colors indicates the specific class of hazard. Hazardous Materials Identification System is defined as the numerical hazard rating then incorporate the use of labels with colors.
Blue color: This sign conveys the health hazards of the material, means that long-term exposure to the material can cause the problems, for example kidney damage, and emphysema.
Red for color: This sign conveys the flammability hazards of the material.
Yellow for color: This sign conveys the instability hazards of the material.
Answer:
See explanation
Explanation:
We define the formal charge on an atom in a molecule as the charge it carries assuming that electrons in all chemical bonds of the molecule were shared equally between atoms irrespective of the electronegativity of each atom.
The formula for calculating the formal charge on an atom in a molecule is;
Formal Charge = [number of valence electrons on neutral atom] – [(number of lone electron pairs) + (½ number of bonding electrons)] ·
The formal charge on the two nitrogen atoms in diazomethane is obtained as follows;
Middle nitrogen atom = 5 – 8/2 – 0 = +1
Last nitrogen atom = 5 – 4/2 – 4 = –1
The Lewis structure of the molecule is shown in the image attached.
144 mL of fluorine gas is required to react with 1.28 g of calcium bromide to form calcium fluoride and bromine gas at STP.
<h3>What is Ideal Gas Law ? </h3>
The ideal gas law states that the pressure of gas is directly proportional to the volume and temperature of the gas.
PV = nRT
where,
P = Presure
V = Volume in liters
n = number of moles of gas
R = Ideal gas constant
T = temperature in Kelvin
Here,
P = 1 atm [At STP]
R = 0.0821 atm.L/mol.K
T = 273 K [At STP]
Now first find the number of moles
F₂ + CaBr₂ → CaF₂ + Br₂
Here 1 mole of F₂ reacts with 1 mole of CaBr₂.
So, 199.89 g CaBr₂ reacts with = 1 mole of F₂
1.28 g of CaBr₂ will react with = n mole of F₂

n = 0.0064 mole
Now put the value in above equation we get
PV = nRT
1 atm × V = 0.0064 × 0.0821 atm.L/mol.K × 273 K
V = 0.1434 L
V ≈ 144 mL
Thus from the above conclusion we can say that 144 mL of fluorine gas is required to react with 1.28 g of calcium bromide to form calcium fluoride and bromine gas at STP.
Learn more about the Ideal Gas here: brainly.com/question/20348074
#SPJ4