Answer: Most of the stars in the universe are main sequence stars — those converting hydrogen into helium via nuclear fusion. A main sequence star may have a mass between a third to eight times that of the sun and eventually burn through the hydrogen in its core. Over its life, the outward pressure of fusion has balanced against the inward pressure of gravity. Once the fusion stops, gravity takes the lead and compresses the star smaller and tighter.
Temperatures increase with the contraction, eventually reaching levels where helium is able to fuse into carbon. Depending on the mass of the star, the helium burning might be gradual or might begin with an explosive flash.
Movement from place to palce
Atoms are the building blocks of all matter
Answer:
The answer to your question is V = 0.32 L
Explanation:
Data
Volume of NH₃ = ?
P = 3.2 atm
T = 23°C
mass of CaH₂ = 2.65 g
Balanced chemical reaction
6Ca + 2NH₃ ⇒ 3CaH₂ + Ca₃N₂
Process
1.- Convert the mass of CaH₂ to moles
-Calculate the molar mass of CaH₂
CaH₂ = 40 + 2 = 42 g
42 g ------------------ 1 mol
2.65 g -------------- x
x = (2.65 x 1)/42
x = 0.063 moles
2.- Calculate the moles of NH₃
2 moles of NH₃ --------------- 3 moles of CaH₂
x --------------- 0.063 moles
x = (0.063 x 2) / 3
x = 0.042 moles of NH₃
3.- Convert the °C to °K
Temperature = 23°C + 273
= 296°K
4.- Calculate the volume of NH₃
-Use the ideal gas law
PV = nRT
-Solve for V
V = nRT / P
-Substitution
V = (0.042)(0.082)(296) / 3.2
-Simplification
V = 1.019 / 3.2
-Result
V = 0.32 L