Answer: B represents an element.
The quantity of heat required to vapourize 1 mole of a substance depends on the kind of intermolecular forces between the molecules of the substance. Diethyl ether molecules are held together by weak dispersion forces compared to the stronger hydrogen bonding in ethanol. Therefore, 1 mole of diethyl ether requires less heat to vapourize than is required to vapourize 1 mole of ethanol.
Intermolecular forces hold the molecules a substance together in a given state of matter. The properties of a substance such as boiling point, melting point etc are dependent on the nature of intermolecular forces holding the molecules of the substance.
Diethyl ether molecules are held together by weak dispersion forces while molecules of ethanol are held together by hydrogen bonds.
Since hydrogen bonds are much stronger than dispersion forces, a greater quantity of heat is required to break the intermolecular hydrogen bonds in ethanol in order to vapourize them than is required to vapourize diethyl ether.
Therefore, owing to stronger intermolecular forces between molecules of ethanol, less heat is required to vapourize than is required to vapourize 1 mole of ethanol.
Learn more: brainly.com/question/9328418
Mechanical Energy
Mechanism energy is the energy associated with the position and motion of an object. Therefore it is also the summation of the kinetic and potential energies of the object.
Explanation:
Mechanism energy is the energy associated with the position and motion of an object. Therefore it is also the summation of the kinetic and potential energies of the object.
In the muscles, to have movement, the chemical bonds in ATP is broken to enable the sliding action of the myosin and actin fibres of a sarcomere (the basic unit of muscle). This sliding action is responsible for contraction of muscle. The coordinated contractions and relaxations of sarcomeres on muscles result in movement which translates to mechanical energy.
This process is never 100% efficient with some energy lost as heat energy.
Learn More:
For more on energy transformation check out;
brainly.com/question/12764386
brainly.com/question/12841537
#LearnWithBrainly
Answer:
Structural formula shows the atoms and bondsin an organic compound.
Explanation:
Structural formula of methane shows
1 Carbon atom is singly bonded to 4 hydrogen atoms.
They have no charge and are located inside the nucleus