We know that velocity is equal to the total displacement of an object over time.

Deriving from that equation, we can say that:

Okay, so here it goes:

The bicycle took 25.02 seconds to displace at 58.3 meters.
Answer:
4°C
Explanation:
Water is densest at 4°C. Since dense water sinks, the bottom of the lake will be 4°C.
I’m going to use molasses as an example of a substance.
The mass and volume both change when changing the amount of molasses.
However, the density does not change. This is because the mass and volume increase at the same rate/proportion!
Even though there is more molasses (mass) in test tube A, the molasses also takes up more space (volume). Therefore, the spacing between those tiny particles that make up the molasses is constant (does not change).
The size or amount of a material/substance does not affect its density.
Answer:
189 m/s
Explanation:
The pilot will experience weightlessness when the centrifugal force, F equals his weight, W.
So, F = W
mv²/r = mg
v² = gr
v = √gr where v = velocity, g = acceleration due to gravity = 9.8 m/s² and r = radius of loop = 3.63 × 10³ m
So, v = √gr
v = √(9.8 m/s² × 3.63 × 10³ m)
v = √(35.574 × 10³ m²/s²)
v = √(3.5574 × 10⁴ m²/s²)
v = 1.89 × 10² m/s
v = 189 m/s
Work done on the crate is 1411.2 J
Explanation:
Work done is defined as the product of force and the distance moved by the object. The unit of work done is in joules and denoted by the symbol J.
Work done = F * d
where F represents the force and d represents the distance moved by the object.
mass = 72 kg , distance moved by the object is given by 2.0 m
Force F = mass * gravity = 72 * 9.8
= 705.6 N =706 N.
Work done = 706 * 2.0 = 1412 J.