Answers:
a) -2.54 m/s
b) -2351.25 J
Explanation:
This problem can be solved by the <u>Conservation of Momentum principle</u>, which establishes that the initial momentum
must be equal to the final momentum
:
(1)
Where:
(2)
(3)
is the mass of the first football player
is the velocity of the first football player (to the south)
is the mass of the second football player
is the velocity of the second football player (to the north)
is the final velocity of both football players
With this in mind, let's begin with the answers:
a) Velocity of the players just after the tackle
Substituting (2) and (3) in (1):
(4)
Isolating
:
(5)
(6)
(7) The negative sign indicates the direction of the final velocity, to the south
b) Decrease in kinetic energy of the 110kg player
The change in Kinetic energy
is defined as:
(8)
Simplifying:
(9)
(10)
Finally:
(10) Where the minus sign indicates the player's kinetic energy has decreased due to the perfectly inelastic collision
Answer:

Explanation:
Given that
d= 1.5 in ( 1 in = 0.0254 m)
d= 0.0381 m
P= 75 hp ( 1 hp = 745.7 W)
P= 55927.5 W
N= 1800 rpm
We know that power P is given as

T=Torque
N=Speed

T=296.85 N.m
The maximum shear stress is given as



We know that 1 MPa =0.145 ksi

Answer: Parietal
Explanation: The parietal lobe is where the primary somatosensory cortex is located. This cortex is where all tactile stimulation is processed in the brain and allows to you detect/feel someone scratching your back.
Answer:
The needed energy to melt of ice is 1670 J.
Explanation:
Given that,
Mass of ice = 5 g
Specific latent heat = 334000 J/kg
We need to calculate the energy
Using formula of energy

Where, m = mass
L = latent heat
Put the value into the formula


Hence, The needed energy to melt of ice is 1670 J.