Answer:
The zeroes are 3 and -2...if u need explanation I am open but seem in a hurry
Answer:
Heights of 29.5 and below could be a problem.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
The heights of 2-year-old children are normally distributed with a mean of 32 inches and a standard deviation of 1.5 inches.
This means that 
There may be a problem when a child is in the top or bottom 5% of heights. Determine the heights of 2-year-old children that could be a problem.
Heights at the 5th percentile and below. The 5th percentile is X when Z has a p-value of 0.05, so X when Z = -1.645. Thus


Heights of 29.5 and below could be a problem.
To solve this problem,you need to use the formula d = rd (distance = rates x time)She runs at a speed of 7 mph and walks at a speed of 3 mph. Her distance running is d = 7trwhere tr is the time she spends running Her distance walking isd = 3twwhere tw is the time she spends walking The distances are the same so7tr = 3tw We also know that the total time is 4 hourstr + tw = 4tr = 4-tw Substitute this value of tr in the first equation7tr = 3tw7(4-tw) = 3tw28-7tw = 3tw28 = 10tw2.8 = tw Denise will spend 2.8 hours (2 hours, 48 minutes) walking back and 1.2 hours (1 hour, 12 minutes running.
Hope I helped :)
You would multiply 6.2 by -4 which is -24.8 so then the equation is y+-24.8=-13 then add -24.8 to both sides and it will be y=11.8
Answer:
Decay
Step-by-step explanation: