Answer:
6√3 ±3 ≈ {7.392, 13.392}
Step-by-step explanation:
The length of AB is the long side of a right triangle with hypotenuse CD and short side (AC -BD). The desired radius values will be half the length of EF, with AE added or subtracted.
__
<h3>length of AB</h3>
Radii AC and BD are perpendicular to the points of tangency at A and B. They differ in length by AC -BD = 12 -9 = 3 units.
A right triangle can be drawn as in the attached figure, where it is shaded and labeled with vertices A, B, C. Its long leg (AB in the attachment) is the long leg of the right triangle with hypotenuse 21 and short leg 3. The length of that leg is found from the Pythagorean theorem to be ...
AB = √(21² -3²) = √432 = 12√3
<h3>tangent circle radii</h3>
This is the same as the distance EF. Half this length, 6√3, is the distance from the midpoint of EF to E or F. The radii of the tangent circles to circles E and F will be (EF/2 ±3). Those values are ...
6√3 ±3 ≈ {7.392, 13.392}
Answer:
140 degrees
Step-by-step explanation:
supplementary angles
Answer:
22.803
Step-by-step explanation:
multiple 30% by 76.01 equals 22.803
Answer:
4 Hours
Step-by-step explanation:
Let's say that the rate of the machines 1/x, because every time they complete an order, it takes them x hours. To find x, we have to add the the rates of the individual machines, which would equal the rate of the machines working together. We know that there are four machines working together at the same rate, and it took them 32 hours.
So:
1/x + 1/x + 1/x + 1/x = 1/32
1/4x = 1/32
4x = 32
x = 8
Thus, the rate of the machines is 1/8.
Now we have to find the time of the order with only half of the machines working together. This time, we don't know the combined rate, so I'll substitute it for y.
1/8 + 1/8 = 1/y
1/4 = 1/y
y = 4
The time taken to complete it is 4 hours.