Answer:
-2 and 6
Step-by-step explanation:
-2+6=4
-2×6=-12
Answer:
68
Step-by-step explanation:
Step-by-step explanation:
If the parabola has the form
(vertex form)
then its vertex is located at the point (h, k). Therefore, the vertex of the parabola

is located at the point (8, 6).
To find the length of the parabola's latus rectum, we need to find its focal length <em>f</em>. Luckily, since our equation is in vertex form, we can easily find from the focus (or focal point) coordinate, which is

where
is called the focal length or distance of the focus from the vertex. So from our equation, we can see that the focal length <em>f</em> is

By definition, the length of the latus rectum is four times the focal length so therefore, its value is

Answer:
Area of Trapezoid is 39 unit²
Step-by-step explanation:
Given as :
For A Trapezoid
The measure of base side 1 =
= 10 unit
The measure of base side 2 =
= 16 unit
The height of the Trapezoid = h = 3 unit
Let The Area of Trapezoid = A square unit
<u>Now, From Formula</u>
Area of Trapezoid =
× (sum of opposite base) × height
I.e A =
× (
+
) × h
Or, A =
× (10 unit + 16 unit) × 3 unit
Or, A =
× (26 unit) × 3 unit
Or, A =
× 78 unit²
Or, A =
unit²
I.e A = 39 unit²
So, The Area of Trapezoid = A = 39 unit²
Hence, The Area of Trapezoid is 39 unit² . Answer
Answer:
Qualitative variable
Step-by-step explanation:
The response is qualitative variable due to its possible categories. In short, the response can only be divided into categories and cannot be interpreted numerically in a meaningful way. Thus, response is a qualitative variable. Also, the categories involves ordering like better and worse etc so, the measurement of scale would be ordinal in this scenario.