Answer:
13.33 g/dm³
Explanation:
Concentration (g/dm³)= mass(g) ÷ volume (dm³)
Now you need to convert 150 cm³ to dm³
1000cm³ = 1 dm³
thus, 150 cm3= 150 ÷ 1000
= 15dm³
and you already have mass in grams
so concentration = 2 ÷ 0.15
= 13.33 g/dm³ and there you go.. solved ;)
<h3>Answer:</h3>
a) Moles of Caffeine = 1.0 × 10⁻⁴ mol
b) Moles of Ethanol = 4.5 × 10⁻³ mol
<h3>Solution:</h3>
Data Given:
Mass of Caffeine = 20 mg = 0.02 g
M.Mass of Caffeine = 194.19 g.mol⁻¹
Molecules of Ethanol = 2.72 × 10²¹
Calculate Moles of Caffeine as,
Moles = Mass ÷ M.Mass
Putting values,
Moles = 0.02 g ÷ 194.19 g.mol⁻¹
Moles = 1.0 × 10⁻⁴ mol
Calculate Moles of Ethanol as,
As we know one mole of any substance contains 6.022 × 10²³ particles (atoms, ions, molecules or formula units). This number is also called as Avogadro's Number.
The relation between Moles, Number of Particles and Avogadro's Number is given as,
Number of Moles = Number of Molecules ÷ 6.022 × 10²³
Putting values,
Number of Moles = 2.72 × 10²¹ Molecules ÷ 6.022 × 10²³
Number of Moles = 4.5 × 10⁻³ Moles
The answer is A beautiful
The specific heat capacity is intensive, and does not depend on the quantity.
We can categorize a property of the compound as either intensive or extensive when defining a particular aspect of it. The extent of a drug or compound is a quality that is influenced by the sample size used. However, the intense property is independent of the quantity (we can say that it is independent on the amount of the sample used). One such example of an intensive property is density.
The specific heat capacity of a substance or a compound describes the amount of heat (in Joules) needed to increase the temperature of one gram of the substance by 1 unit.
The specific heat capacity is independent on the amount of substance used, therefore, it is classified as an intensive property of a substance. The specific heat capacity will not depend on the mass of the given substance and it will be a constant value for each substance.
So the specific heat capacity is intensive, and does not depend on the quantity, but the heat capacity is extensive, so two grams of liquid water have twice the heat capacitance of 1 gram, but the specific heat capacity, the heat capacity per gram, is the same, 4.184 (J/g.K).
To learn more about the specific heat capacity please click on the link brainly.com/question/16559442
#SPJ4