Answer:
d=0.137 m ⇒13.7 cm
Explanation:
Given data
m (Mass)=3.0 kg
α(incline) =34°
Spring Constant (force constant)=120 N/m
d (distance)=?
Solution
F=mg
F=(3.0)(9.8)
F=29.4 N
As we also know that
Force parallel to the incline=FSinα
F=29.4×Sin(34)
F=16.44 N
d(distance)=F/Spring Constant
d(distance)=16.44/120
d(distance)=0.137 m ⇒13.7 cm
 
        
             
        
        
        
An electric circuit is anything in which electric current flows. Typically it refers to things with wiring like the electronics in your phone, but it can be made of anything that conducts electricity. 
Say you have a battery, it basically has a bunch of electrons under a potential (think of gas in a tank under pressure), but the only way for the electrons to move is to move through a conductor, which are molecules with loosely held electrons. If you take a copper wire and touch each end to the two terminals you’ve completed an electric circuit because the electrons can now flow. But you can also put things partway through the wire like a lightbulb, which when the electrons run through it generates light.
        
             
        
        
        
Answer:
The image distance is 17.56 cm
Explanation:
We have,
Height of light bulb is 3 cm.
The light bulb is placed at a distance of 50 cm. It means object distance is, u =-50 cm
Focal length of the lens, f = +13 cm
Let v is distance between image and the lens. Using lens formula :

So, the image distance is 17.56 cm.
 
        
             
        
        
        
Answer:
a. They will be tie
b. Win the wood cylinder 
Explanation:
a.
The both cylinders will reach the bottom at the same time notice the relation in the equation in indepent of the length and both have the same radius and the same rotational inertia.


So both will be tie 
b.

The acceleration of the wood cylinder is larger than the acceleration of the brass cylinder so the cylinder of wood will reach the bottom first 

So the wood win the race
 
        
             
        
        
        
Answer: The bottom of the ladder is moving at 3.464ft/sec
Explanation:
The question defines a right angle triangle. Therefore using pythagorean 
h^2 + l^2 = 10^2 = 100 ...eq1
dh/dt = -2ft/sec
dl/ dt = ?
Taking derivatives of time in eq 1 on both sides
2hdh/dt + 2ldl/dt = 0 ....eq2
Putting l = 5ft in eq2
h^ + 5^2 = 100
h^2 = 25 = 100
h Sqrt(75)
h = 8.66 ft
Put h = 8.66ft in eq2
2 × 8.66 × (-2) + 2 ×5 dl/dt
dl/dt = 17.32 / 5
dl/dt = 3.464ft/sec