The moon's mass is only outnumbered by Earth's mass, which is 81 times greater. This indicates that while it moves in a circle, the circle is substantially smaller than usual. The core of the circle that the Earth revolves around is really inside the planet.
In space, there is gravity. It is gravity that makes the moon orbit. Everything in orbit, including the moon, is falling freely. That entails letting gravity operate as it pleases. Because you continually missing the object you are orbiting, an orbit is like a fall that never makes it to the earth; by the time you arrive at the spot where the object was, you have overshot, and it is now behind you.
Learn more about Earth here-
brainly.com/question/14042561
#SPJ4
Mechanical advantage is defined as the ratio of output load to the input load. The mechanical advantage of the machine will be 0.1.
<h3>What is
mechanical advantage?</h3>
Mechanical advantage is a measure of the ratio of output force to input force in a system,
It is used to obtain the efficiency of forces in levers and pulleys. It is an effective way of amplifying the force in simple machines like levers.
The theoretical mechanical advantage is defined as the ratio of the force responsible for the useful work in the system to the applied force.
Given
applied force = 250 N
Output force = 25
Mechanical advantage = work output / work input



Hence the mechanical advantage of the machine will be 0.1
To learn more about the mechanical advantage refer to the link;
brainly.com/question/7638820
Answer:

Explanation:
Given that
d= 1.5 in ( 1 in = 0.0254 m)
d= 0.0381 m
P= 75 hp ( 1 hp = 745.7 W)
P= 55927.5 W
N= 1800 rpm
We know that power P is given as

T=Torque
N=Speed

T=296.85 N.m
The maximum shear stress is given as



We know that 1 MPa =0.145 ksi

Answer:
a) True. The number of photoelectrons is proportional to the amount (intensity) of the incident beam. From the expression above we see that threshold frequency cannot emit electrons.
b) λ = c / f
Therefore, as the wavelength increases, the frequency decreases and therefore the energy of the photoelectrons emitted,
c) threshold energy
h f =Ф
Explanation:
It's photoelectric effect was fully explained by Einstein by the expression
Knox = h f - fi
Where K is the kinetic energy of the photoelectrons, f the frequency of the incident radiation and fi the work function of the metal
a) True. The number of photoelectrons is proportional to the amount (intensity) of the incident beam. From the expression above we see that threshold frequency cannot emit electrons.
b) wavelength is related to frequency
λ = c / f
Therefore, as the wavelength increases, the frequency decreases and therefore the energy of the photoelectrons emitted, so there is a wavelength from which electrons cannot be removed from the metal.
c) As the work increases, more frequency radiation is needed to remove the electrons, because there is a threshold energy
h f =Ф
Answer:
It doesn't give light
Explanation:
No Flowing of electricity