Answer:
he performed 100 push-ups, 100 sit-ups, and 100 squats, and ran 10 kilometers each day for over a year.
Explanation:
crazy right
No, the building's size in comparison to the earth would have no change or change so increadibly miniscule, like if you were told to spin slowly and an and was placed on top of your head
Answer:
v_{4}= 80.92[m/s] (Heading south)
Explanation:
In order to calculate this problem, we must use the linear moment conservation principle, which tells us that the linear moment is conserved before and after the collision. In this way, we can propose an equation for the solution of the unknown.
ΣPbefore = ΣPafter
where:
P = linear momentum [kg*m/s]
Let's take the southward movement as negative and the northward movement as positive.

where:
m₁ = mass of car 1 = 14650 [kg]
v₁ = velocity of car 1 = 18 [m/s]
m₂ = mass of car 2 = 3825 [kg]
v₂ = velocity of car 2 = 11 [m/s]
v₃ = velocity of car 1 after the collison = 6 [m/s]
v₄ = velocity of car 2 after the collision [m/s]
![-(14650*18)+(3825*11)=(14650*6)-(3825*v_{4})\\v_{4}=80.92[m/s]](https://tex.z-dn.net/?f=-%2814650%2A18%29%2B%283825%2A11%29%3D%2814650%2A6%29-%283825%2Av_%7B4%7D%29%5C%5Cv_%7B4%7D%3D80.92%5Bm%2Fs%5D)