Air pressure changes with altitude because of issues related to gravity. Molecules have more weight the closer they are to the Earth and more of them move to lower elevations as a result; this causes increased pressure because there are more molecules in number and proximity. Conversely, air at higher elevations has less weight, but also forces pressure on those layers below it, resulting in the molecules closer to the Earth supporting more weight, increasing the pressure
- Some people view bacteria specimens with a 100x objective lens in order to see the smallest details.
- Others may use a 10x objective lens for more general purposes, such as examining stained slides or pictures.
- And still others may use a 40x objective lens to gain maximum resolution when viewing images of thick samples.
It is important to choose the appropriate magnification for your needs so that you can properly examine the specimen under study.
<h3>Why is the 100x objective lens necessary to see bacteria?</h3>
- Bacteria must, of course, be viewed at the maximum magnification and resolution possible because to their small size.
- Due to optical restrictions, this is approximately 1000x in a light microscope.
- To improve resolution, the oil immersion method is performed. This calls for a unique 100x objective.
To learn more about bacterial specimen, visit:
brainly.com/question/1412064
#SPJ4
Explanation:
nuclear energy is non renewable resources because it cannot be renewed...
Answer:
In a coiled spring, the particles of the medium vibrate to and fro about their mean positions at an angle of
A. 0° to the direction of propagation of wave
Explanation:
The waveform of a coiled spring is a longitudinal wave, which is made up of vibrations of the spring which are in the same direction as the direction of the wave's advancement
As the coiled spring experiences a compression force and is then released, it experiences a sequential movement of the wave of the compression that extends the length of the coiled spring which is then followed by a stretched section of the coiled spring in a repeatedly such that the direction of vibration of particles of the coiled is parallel to direction of motion of the wave
From which we have that the angle between the direction of vibration of the particles of the coiled spring and the direction of propagation of the wave is 0°.