Answer
given,
Side of copper plate, L = 55 cm
Electric field, E = 82 kN/C
a) Charge density,σ = ?
using expression of charge density
σ = E x ε₀
ε₀ is Permittivity of free space = 8.85 x 10⁻¹² C²/Nm²
now,
σ = 82 x 10³ x 8.85 x 10⁻¹²
σ = 725.7 x 10⁻⁹ C/m²
σ = 725.7 nC/m²
change density on the plates are 725.7 nC/m² and -725.7 nC/m²
b) Total change on each faces
Q = σ A
Q = 725.7 x 10⁻⁹ x 0.55²
Q = 219.52 nC
Hence, charges on the faces of the plate are 219.52 nC and -219.52 nC
The expression, in terms of defined quantities and g is therefore Fu =((mg/2) +2 mp) g
<h3>
What is a Scale?</h3>
This can be defined as a balance or any of various other instruments or devices for weighing.
The expression in terms of defined quantities and g, for the force that the scale under left pillar shows that Fu =((mg/2) +2 mp) g .
Read more about Force here brainly.com/question/4515354
Answer:
The approximate change in entropy is -14.72 J/K.
Explanation:
Given that,
Temperature = 22°C
Internal energy 
Final temperature = 16°C
We need to calculate the approximate change in entropy
Using formula of the entropy

Where,
= internal energy
T = average temperature
Put the value in to the formula


Hence, The approximate change in entropy is -14.72 J/K.
Answer:
A) The space time coordinate x of the collision in Earth's reference frame is
.
B) The space time coordinate t of the collision in Earth's reference frame is

Explanation:
We are told a rocket travels in the x-direction at speed v=0,70 c (c=299792458 m/s is the exact value of the speed of light) with respect to the Earth. A collision between two comets is observed from the rocket and it is determined that the space time coordinates of the collision are (x',t') = (3.4 x 10¹⁰ m, 190 s).
An event indicates something that occurs at a given location in space and time, in this case the event is the collision between the two comets. We know the space time coordinates of the collision seen from the reference frame of the rocket and we want to find out the space time coordinates in Earth's reference frame.
<em>Lorentz transformation</em>
The Lorentz transformation relates things between two reference frames when one of them is moving with constant velocity with respect to the other. In this case the two reference frames are the Earth and the rocket that is moving with speed v=0,70 c in the x axis.
The Lorentz transformation is




prime coordinates are the ones from the rocket reference frame and unprimed variables are from the Earth's reference frame. Since we want position x and time t in the Earth's frame we need the inverse Lorentz transformation. This can be obtained by replacing v by -v and swapping primed an unprimed variables in the first set of equations




First we calculate the expression in the denominator


then we calculate t




finally we get that

then we calculate x






finally we get that
