The variable that is altered by the independent variable is called the dependent variable. the spectrum given out by the hypothetical unknown celestial object.
Name : Christopher Andre
Instructor name : Albert brown
Name of the lab : ELS Laboratory
The term electromagnetic spectrum refers to the range of electromagnetic radiation's frequencies, as well as the wavelengths and photon energies connected to each frequency.
By analyzing the absorption spectra of the planets and moons, the electromagnetic spectrum experiment seeks to identify the components that make up their atmospheres.
From below one hertz to over 1025 hertz, electromagnetic waves are included in the electromagnetic spectrum.
The wavelengths that correlate to the frequency range from tens of thousands of kilometers to a small portion of the size of an atomic nucleus.
Starting at the low frequency (long wavelength) end of the spectrum, each frequency band's electromagnetic waves are referred to by a variety of names.
Hence the dependent variable is the one that changes as a result of the independent variable.
Learn more about electromagnetic spectrum here
brainly.com/question/13803241
#SPJ10
Answer:
The speed of the wind is 25 km/hr.
Explanation:
Let us call
the speed of the plane and
the speed of the wind. When the plane is flying against the wind, it covers the distance of 900-km in 2 hours (120 minutes); therefore;
(1). 
And when the plane is flying with the wind, it covers the same distance in 1 hour 48 minutes (108 minutes)
(2). 
From equation (1) we solve for
and get:
,
and by putting this into equation (2) we get:





or in km/hr this is

A = -9.8
v = -9.8t -8
s = -4.9 t2 -8t +25
So… -5t^2 -8t + 25 =0, we’ll rearrange to 5t^2 + 8t - 25. We get two roots, one is positive and is 1.59 seconds
V = -9.8(1.59) - 8 = -23.6
So… it takes 1.59 seconds to hit the ground at -23.6 m/s.
Answer:
A
Explanation:
it is weak I hope it helps u have a great day
The harmonic frequency of a musical instrument is the minimum frequency at which a string that is fixed at both ends in the instrument may vibrate. The harmonic frequency is known as the first harmonic. Each subsequent harmonic has a frequency equal to:
n*f, where n is the number of the harmonic and f is the harmonic frequency. Therefore, the harmonic frequency may be calculated using:
f = 100 / 2
f = 50 Hz