Answer:
External force on him will be 112 N
Explanation:
We have given the mass of the sprinter m =70 kg
Acceleration of the sprinter 
We have to find the net external force
According to second law of motion force = mass ×acceleration
Force is dependent on the mass and acceleration
So 
So external force will be 112 N
Total resistance=R1+ R2= 6Ω
Voltage=12v
Current =

Current= 2A
In a series circuit, equal current passes through every resistance.
Answer is option A
Answer:
The two methods will yield different results as one is subject to experimental errors that us the Archimedes method of measurement, the the density measurement method will be more accurate
Explanation:
This is because the density method using the calculated volume will huve room for less errors that's occur in practical method i.e Archimedes method due to human error
Answer:
No, not necessarily
Explanation:
If an object is moving with an acceleration that causes its speed to be reduced, there will be a moment in which it reaches v = 0, but this doesn't necessarily mean that the acceleration isn't acting anymore. If the object continues its movement with the same acceleration, it's velocity will become negative.
An example of an object that has zero velocity but non-zero acceleration:
If you throw an object in the air with a certain velocity, it will move vertically, reducing its velocity in a 9,8
rate (which is the acceleration caused by gravity). At a certain point, the object will reach its maximum height, and will start to fall. In the exact moment that it reaches the maximum height, before it starts falling, its velocity is zero, but gravity is still acting on the object (this is the reason why it starts falling instead of just being stopped at that point). Therefore, at that point, the object has zero velocity but an acceleration of 9,8
.
The answer is weak.
The interaction of nature that will depend on the distance through the
way it acts and involved in beta decay is the weak interaction or the weak
force. This interaction is the responsible for radioactive decay which also
plays a significant role in nuclear fission.