Binomial probability states that the probability of x successes on n repeated trials in an experiment which has two possible outcomes can be obtained by
(nCx).(p^x)⋅((1−p)^(n−x))
Where success on an individual trial is represented by p.
In the given question, obtaining heads in a trial is the success whose probability is 1/2.
Probability of 6 heads with 6 trials = (6C6).((1/2)^6).((1/2)^(6–6))
= 1/(2^6)
= 1/64
The determinant of a 2 x 2 matrix can be calculated as:
Product of non-diagonal elements subtracted from product of diagonal elements.
The diagonal elements in given matrix are 12 and 2. The non-diagonal elements are -6 and 0.
So,
Determinant G = 12(2) - (-6)(0)
Determinant G = 24 - 0 = 24
So, option B gives the correct answer
Answer:
Quadrant IV is always in the bottom right corner.
Answer:
x = 13/17
Step-by-step explanation:
27 = 34x + 1
34x = 27 - 1
34x = 26
x = 26/34
x = 13/17