Answer:
Using the molarity of the solution
Explanation:
The concentration of the two solutions can be compared by the use of the number of moles of solute present in each of the solutions. The solution with a higher molarity will be concentrated while the solution with a lower molarity will be dilute.
Hello!
To start off, we must look at atomic masses. Atoms all have different weights, so we must first find hydrogen and oxygen's atomic masses.
Oxygen: 16.00 amu
Hydrogen: 1.01 amu
Now, moving on to the weight of water itself. Water has the formula of H20, with two hydrogen atoms and one oxygen. Therefore, <u>add up the amus to get the weight of one molecule of water.</u>
1.01 + 1.01 + 16.00 = 18.02 amu
Now, to see the ratio of each component. Since hydrogen weighs a total of 2.02 amu (1.01 + 1.01) in the entire atom, we can state that hydrogen makes up about 0.112 of the weight of water. Now apply that ratio to 16 g, and solve.
0.112x = 16
142.857143 = x
So therefore, about 143 grams of water are made when 16g of hydrogen reacts with excess oxygen.
Hope this helps!
BaO, Barium Oxide.
Na2SO4, Sodium Sulfate.
CuO, Copper (II) Oxide.
P2O5, Diphosphorus Pentoxide.
HNO3, Nitric Acid.
CO32-, Molecular Formula.
Hope this helps. :)
Answer:
the moon but mass stays the same
Explanation:
An atom typically has a neutral charge, as in most cases an atom has the same amount of positively charged protons as it does negatively charged electrons.
Atoms that do not have the same amount of electrons as protons are known as isotopes.