Answer:
in reading volume - you read from the bottom of the meniscus, which is the curve formed from the liquid in the graduated cylinder. Most graduated cylinders are in ml, so measure in the most accurate reading.
Explanation:
Answer:
76.0%
Explanation:
Let's consider the following reaction.
CaCO₃(s) ⇄ CaO(s) + CO₂(g)
At equilibrium, the equilibrium constant Kp is:
Kp = 1.16 = pCO₂ ⇒ pCO₂ = 1.16 atm
We can calculate the moles of CO₂ at equilibrium using the ideal gas equation.
From the balanced equation, we know that 1 mole of CO₂ is produced by 1 mole of CaCO₃. Taking into account that the molar mass of CaCO₃ is 100.09 g/mol, the mass of CaCO₃ that reacted is:
The percentage by mass of the CaCO₃ that reacted to reach equilibrium is:
Dipole-dipole interactions, and London dispersion interactions
This question is incomplete, the complete question is;
Tonksite is a solid at 300.00K. At 300.00 K its enthalpy of sublimation is 66.00 kJ/mol. The sublimation pressure at 300.00 K is 5.00 × 10⁻⁴ atm
Calculate the sublimation pressure of the solid at the melting point of 400.00 K assuming that the enthalpy of sublimation is not a function of temperature.
Answer: the sublimation pressure of the solid at the melting point is 0.3727 atm
Explanation:
Given that;
T1 = 300 K
T2 = 400 K
H_sub = 66 kJ/mol = 66000 J/mol
P1 = 5.00 × 10⁻⁴ atm
p2 = ?
now using the expression
log( p2 / 5.00 × 10⁻⁴ ) = (H_sub / R × 2.303 ) (( T2 - T1) / T1T2)
now we substitute of given values into the expression
log(p2/p1) = (66000 / 8.314 × 2.303 ) (( 400 - 300) / 300 × 400 )
p2 = 0.3727 atm
therefore the sublimation pressure of the solid at the melting point is 0.3727 atm
Your answer is sublimation.