Answer:
6H2 + P4→ 4PH3
Explanation:
Phosphorus has 4 in it and hydrogen has 3 in it. in order to balance it, we have to put 4 in front of phosphine so that the phosphorus on the product side has an equal amount as to the one on the reactant side.
the only one left to balance is hydrogen and so in order to balance it we put a 6 on h2 because the hydrogen in the product size becomes 12 (4 * 3).
therefore the hydrogen on the reactant side becomes 12 as well (6 * 2)
Plane is the right answer I thinkkkkk
The answer is B. This is because Sodium has 1 valence electron and Fluorine has 7 valence electrons. All elements want 8 valence electrons so they may be stale, like the noble gases are. Hope this helps.
Answer:
Failed to upload, Please Retry
Explanation:
Failed to upload, Please Retry
Answer:
mass of X extracted from the aqueous solution by 50 cm³ of ethoxy ethane = 3.33 g
Explanation:
The partition coefficient of X between ethoxy ethane (ether) and water, K is given by the formula
K = concentration of X in ether/concentration of X in water
Partition coefficient, K(X) between ethoxy ethane and water = 40
Concentration of X in ether = mass(g)/volume(dm³)
Mass of X in ether = m g
Volume of ether = 50/1000 dm³ = 0.05 dm³
Concentration of X in ether = (m/0.05) g/dm³
Concentration of X in water = mass(g)/volume(dm³)
Mass of X in water left after extraction with ether = (5 - m) g
Volume of water = 1 dm³
Concentration of X in water = (5 - m/1) g/dm³
Using K = concentration of X in ether/concentration of X in water;
40 = (m/0.05)/(5 - m)
(m/0.05) = 40 × (5 - m)
(m/0.05) = 200 - 40m
m = 0.05 × (200 - 40m)
m = 10 - 2m
3m = 10
m = 10/3
m = 3.33 g of X
Therefore, mass of X extracted from the aqueous solution by 50 cm³ of ethoxy ethane = 3.33 g