Answer: The enthalpy of formation of
is -396 kJ/mol
Explanation:
Calculating the enthalpy of formation of 
The chemical equation for the combustion of propane follows:

The equation for the enthalpy change of the above reaction is:
![\Delta H^o_{rxn}=[(2\times \Delta H^o_f_{(SO_3(g))})]-[(2\times \Delta H^o_f_{(SO_2(g))})+(1\times \Delta H^o_f_{(O_2(g))})]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%282%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28SO_3%28g%29%29%7D%29%5D-%5B%282%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28SO_2%28g%29%29%7D%29%2B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28O_2%28g%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![-198=[(2\times \Delta H^o_f_{(SO_3(g))})]-[(2\times \Delta -297)+(1\times (0))]\\\\\Delta H^o_f_{(SO_3(g))}=-396kJ/mol](https://tex.z-dn.net/?f=-198%3D%5B%282%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28SO_3%28g%29%29%7D%29%5D-%5B%282%5Ctimes%20%5CDelta%20-297%29%2B%281%5Ctimes%20%280%29%29%5D%5C%5C%5C%5C%5CDelta%20H%5Eo_f_%7B%28SO_3%28g%29%29%7D%3D-396kJ%2Fmol)
The enthalpy of formation of
is -396 kJ/mol
A) LiAlH4
b) Ph(3)SnH
c)Na in dry ether(Wurtz reaction)
<em>Answer:</em>
<em>An Atom can turn into both solid and liquid form depending on the temperature of its surroundings </em>
<em>Explanation:</em>
<em>Scientists have discovered a new state of physical matter in which atoms can exist as both solid and liquid simultaneously.
Researchers have found, however, that some elements can, when subjected to extreme conditions, take on the properties of both solid and liquid states.</em>
Answer:

Explanation:
From the question we are told that:
Moles of sample n=3.20_mol
Volume V=350mL
Temperature T=300k
Generally the equation for ideal gas is mathematically given by




