Answer:
7.11 x
Hz
Explanation:
The equation for converting wavelength to frequency is ν=c/λ, or the speed of light over wavelength. The speed of light is 3.00 x
, and our wavelength here is 422 x
. All we have to do now is substitute our given values:

After reduction, our answer comes out to be about 7.11 x
Hz.
<u>Answer:</u> The temperature of the ideal gas is 
<u>Explanation:</u>
To calculate the temperature, we use the equation given by ideal gas equation:

where,
P = Pressure of the gas = 142,868 Pa = 142.868 kPa (Conversion factor: 1 kPa = 1000 Pa)
V = Volume of gas = 1.0000 L
n = number of moles of ideal gas = 0.0625 moles
R = Gas constant = 
T = temperature of the gas = ?
Putting values in above equation, we get:

Hence, the temperature of the ideal gas is 
The concentration of the sodium hydroxide solution in mol/l is 0.176 M.
Concentration is the abundance of a constituent divided by way of the overall volume of an aggregate. several sorts of mathematical descriptions may be outstanding: mass concentration, molar concentration, variety concentration, and extent awareness.
Given
V =25 ml = 0.025 L
M = 0.1
C₁ = 0.1
V₁ = 21.50 = 0.022 L
C₂ = ?
V₂ = 25 ml = 0.025 L
C₁V₁ = C₂V₂
C₂ = C₁V₁ / V₂
= 0.1 * 0.022 * 2 / 0.025
= 0.176 M
The concentration of a substance is the quantity of solute found in a given amount of solution. Concentrations are normally expressed in terms of molarity, defined because of the variety of moles of solute in 1 L of answer.
The Concentration of an answer is a measure of the quantity of solute that has been dissolved in a given amount of solvent or answer. A concentrated answer is one that has a rather huge quantity of dissolved solute.
Learn more about concentration here:-brainly.com/question/26255204
#SPJ1
The balanced equation for the neutralisation reaction is as follows
2NaOH + H₂SO₄ ---> Na₂SO₄ + 2H₂O
stoichiometry of NaOH to H₂SO₄ is 2:1
the number of moles of NaOH reacted - 0.126 mol/L x 0.0173 L = 0.00218 mol
if 2 mol of NaOH reacts with 1 mol of H₂SO₄
then 0.00218 mol of NaOH reacts with - 0.00218 / 2 = 0.00109 mol of H₂SO₄
molarity is the number of moles of solute in 1 L solution
therefore if 25 mL contains - 0.00109 mol
then 1000 mL contains - 0.00109 mol / 25 mL x 1000 mL = 0.0436 mol/L
therefore molarity of H₂SO₄ is 0.0436 M