I believe the balanced chemical equation is:
C6H12O6 (aq) + 6O2(g)
------> 6CO2(g) + 6H2O(l)
First calculate the
moles of CO2 produced:
moles CO2 = 25.5 g
C6H12O6 * (1 mol C6H12O6 / 180.15 g) * (6 mol CO2 / 1 mol C6H12O6)
moles CO2 = 0.8493 mol
Using PV = nRT from
the ideal gas law:
<span>V = nRT / P</span>
V = 0.8493 mol *
0.08205746 L atm / mol K * (37 + 273.15 K) / 0.970 atm
<span>V = 22.28 L</span>
When the concentration of a reactant is increased, the chemical equilibrium will shift towards the products. More product is formed and the concentration of the reactants decreases as the concentration of the products increases.
Mass is measured in kilograms.
Answer : The partial pressure of the
in the tank in psia is, 32.6 psia.
Explanation :
As we are given 75 %
and 25 %
in terms of volume.
First we have to calculate the moles of
and
.


Now we have to calculate the mole fraction of
.


Now we have to calculate the partial pressure of the
gas.


conversion used : (1 Kpa = 0.145 psia)
Therefore, the partial pressure of the
in the tank in psia is, 32.6 psia.
Ok percent error is abs(calculated-actual)/actual(100%)
So 1.5/96 *100%