Answer:
Hello, there!
In order to solve problems like this DO PEMDAS
The Exponent:
So, equals 4
Your problem becomes
Now we have to do what is in the (
( the is a )
And
Problem becomes
So, this means that your answer would be
Good luck on your assignment and enjoy your day!
kjExplanation:
Answer:
"0.053457 M" of sulfuric acid.
Explanation:
The given values are:
= 10 mL solution
= 12.20 mL
= 22.20 mL
then,
M 0.103 M of NaOH,
= experiment will not be affected
= 10.38 mL
Now,
⇒ mol of NAOH = MV
= 
= 
Whether Sulfuric acid, then
⇒ 
⇒ 
⇒ 
Before any dilution:

⇒ 

(Sulfuric acid)
2 C₁₇H₁₉NO₃ + H₂SO₄ → Product
Moles of H₂SO₄ = M x V(liters) = 0.0116 x 8.91/1000 = 1.033 x 10⁻⁴ mole
moles of morphine = 2 x moles of H₂SO₄ = 2.066 x 10⁻⁴
Mass of morphine = moles x molar mass of morphine = 2.066 x 10⁻⁴ x 285.34
= 0.059 g
percent morphine =

=

= 8.6 %
Answer : Option C) 0.3 mol of Gold.
Explanation : Amongst the options given in the question, 0.3 mol of Au is the greatest in mass in grams.
As 0.3 mol X atomic weight of Au (196.966) = 59.088 grams;
Silver has 0.5 mol X atomic weight of Ag (107.86) = 53.93 grams;
The other options are not relevant as they deal in the atomic range which has mass value very less as compared to the moles of elements.
Therefore, it is clear that Au has the greatest mass amongst the given choices.
Answer:
S+ F2 ⇒ SF
S=1
F =2
So S +F2 ......... 2SF
2S + F2 ..........2SF this is a balance equation
S=2 F=2 in left side s=2 F = 2 in rightside
Explanation:⇆
⇒