the correct IUPAC name of the compound is 1-Butanal.
<h3>What are IUPAC names?</h3>
It is a system of naming organic compounds based on the longest carbon-to-carbon single bonds. It does not matter whether these longest chains are continuous or in a ring.
Thus, when the compound with the chemical formula, CH3-CH2-CH2CHO is considered. The longest carbon-to-carbon chain is 4. The 1st carbon carries a functional group known as an aldehyde.
Aldehydes are equipped with the carbonyl group and have the general formula R−CH=O. They are also sometimes referred to as formyl.
Aldehydes are named after their parent alkane chains with a slight modification. The 'e' is replaced with 'al'
The aldehyde in this case has four carbons. This means that the parent alkane is Butane. Therefore, the name of the compound will be 1-Butanal.
More on IUPAC names can be found here: brainly.com/question/16631447
#SPJ1
The answer is
e o i and a
not really sure forgive me if im wrong
Answer:
Because the molecules have not been in water so they are not moving around each other
Explanation:
<u>Given:</u>
Mass of Ag = 1.67 g
Mass of Cl = 2.21 g
Heat evolved = 1.96 kJ
<u>To determine:</u>
The enthalpy of formation of AgCl(s)
<u>Explanation:</u>
The reaction is:
2Ag(s) + Cl2(g) → 2AgCl(s)
Calculate the moles of Ag and Cl from the given masses
Atomic mass of Ag = 108 g/mol
# moles of Ag = 1.67/108 = 0.0155 moles
Atomic mass of Cl = 35 g/mol
# moles of Cl = 2.21/35 = 0.0631 moles
Since moles of Ag << moles of Cl, silver is the limiting reagent.
Based on reaction stoichiometry: # moles of AgCl formed = 0.0155 moles
Enthalpy of formation of AgCl = 1.96 kJ/0.0155 moles = 126.5 kJ/mol
Ans: Formation enthalpy = 126.5 kJ/mol
Answer:
The reaction rate becomes quadruple.
Explanation:
According to the law of mass action:-
The rate of the reaction is directly proportional to the active concentration of the reactant which each are raised to the experimentally determined coefficients which are known as orders. The rate is determined by the slowest step in the reaction mechanics.
Order of in the mass action law is the coefficient which is raised to the active concentration of the reactants. It is experimentally determined and can be zero, positive negative or fractional.
The order of the whole reaction is the sum of the order of each reactant which is raised to its power in the rate law.
Thus,
Given that:- The rate law is:-
![r=k[A_2][B_2]](https://tex.z-dn.net/?f=r%3Dk%5BA_2%5D%5BB_2%5D)
Now,
and ![[B'_2]=2[B_2]](https://tex.z-dn.net/?f=%5BB%27_2%5D%3D2%5BB_2%5D)
So, ![r'=k[A'_2][B'_2]=k\times 2[A_2]\times 2[B_2]=4\times k[A_2][B_2]=4r](https://tex.z-dn.net/?f=r%27%3Dk%5BA%27_2%5D%5BB%27_2%5D%3Dk%5Ctimes%202%5BA_2%5D%5Ctimes%202%5BB_2%5D%3D4%5Ctimes%20k%5BA_2%5D%5BB_2%5D%3D4r)
<u>The reaction rate becomes quadruple.</u>