<h3>
Answer:</h3>
78.34 g
<h3>
Explanation:</h3>
From the question we are given;
Moles of Nitrogen gas as 2.3 moles
we are required to calculate the mass of NH₃ that may be reproduced.
<h3>Step 1: Writing the balanced equation for the reaction </h3>
The Balanced equation for the reaction is;
N₂(g) + 3H₂(g) → 2NH₃(g)
<h3>Step 2: Calculating the number of moles of NH₃</h3>
From the equation 1 mole of nitrogen gas reacts to produce 2 moles of NH₃
Therefore, the mole ratio of N₂ to NH₃ is 1 : 2
Thus, Moles of NH₃ = Moles of N₂ × 2
= 2.3 moles × 2
= 4.6 moles
<h3>Step 3: Calculating the mass of ammonia produced </h3>
Mass = Moles × molar mass
Molar mass of ammonia gas = 17.031 g/mol
Therefore;
Mass = 4.6 moles × 17.031 g/mol
= 78.3426 g
= 78.34 g
Thus, the mass of NH₃ produced is 78.34 g
<span>We use the formula PV = nRT. P = 758 torr = 0.997 atm. V = 3.50 L. T = 35.6 C = 308.15 K. R = 0.0821. Rearranging the equation gives up n = PV/Rt and we get .0138 moles of butane. Mass of 0.0138 moles of butane = .0138 x 58.12 = 8.02g.</span>
Answer:
Explanation:
Of course you could do the separation chemically. Dissolve the salt up in water, pass thru a filter, wash the iron filings with ethanol, which would encourage the salt to precipitate from solution.
I do hope I helped you! :)
17.6667 Feet is the answer.