Answer:
Part 1) see the procedure
Part 2) 
Part 3) 
Part 4) The minimum number of months, that he needs to keep the website for site A to be less expensive than site B is 10 months
Step-by-step explanation:
Part 1) Define a variable for the situation.
Let
x ------> the number of months
y ----> the total cost monthly for website hosting
Part 2) Write an inequality that represents the situation.
we know that
Site A

Site B

The inequality that represent this situation is

Part 3) Solve the inequality to find out how many months he needs to keep the website for Site A to be less expensive than Site B

Subtract 4.95x both sides


Divide by 5 both sides


Rewrite

Part 4) describe how many months he needs to keep the website for Site A to be less expensive than Site B.
The minimum number of months, that he needs to keep the website for site A to be less expensive than site B is 10 months
3x + (x - 0.75x)
4x - 0.75x
x= cost of the frame
Answer:
The two cars will be almost 188 miles far from each other.
Step-by-step explanation:
Travel Time for Car 1 = t = 3.5 hours
Travel time for Car 2 = t-1 = 3.5 - 1 = 2.5 hours
Average speed of car 1 = 40 mph
Average speed of car 2 = 50 mph
Distance traveled by Car 1 = 40*3.5 = 140 miles
Distance Traveled by Car 2 = 50*2.5 = 125 miles
As both the roads are at a 90 degree angle. The path of the two cars and the joining line of their final position forms a right angle triangle where:
altitude = a = 140
base = b = 125
Distance of cars after 3.5 hours = c = ?
According to Pythagoras theorem:
c^2 = a^2 + b^2
c^2 = 140² + 125²
c² = 19600+15625
c = √35225
c = 187.68
Almost 188 miles.
Answer:
x=2,-8
Step-by-step explanation: