Answer:
N₂ = 503.8 N
Explanation:
given,
mass of bottom block = 37 Kg
mass of middle block = 18 Kg
mass of the top block = 16 Kg
force acting on the top block = 170 N
force on the block at top
N₁ be the normal force from block at middle
now,
N₁ = 170 + m g
N₁ = 170 + 16 x 9.8
now, force on block at middle
N₂ be the normal force exerted by the bottom block
N₂ = N₁ + m₂ g
N₂ = 326.8 + 18 x 9.8
N₂ = 503.8 N
hence, normal force by bottom block is equal to N₂ = 503.8 N
Answer:
1. Number of dry cells of 1.5 V required is 40.
2. Number of internal resistance of 1 ohm required is 807
Explanation:
We'll begin by calculating the resistance. This can be obtained as follow:
Power (P) = 60 W
Voltage (V) = 220 V
Resistance (R) =?
P = V²/R
60 = 220² / R
Cross multiply
60 × R = 220²
60 × R = 48400
Divide both side by 60
R = 48400 / 60
R ≈ 807 Ohm
1. Determination of the number of dry cells of 1.5 V required.
Voltage (V) = 220
Dry Cells = 1.5 V
Number of dry cells (n) =?
n = Voltage / Dry cells
n = 60 / 1.5
n = 40
2. Determination of the number of internal resistance of 1 ohm required.
Resistance (R) = 807 Ohm
Internal resistance (r) = 1 ohm
Number of internal resistance (n) =?
n = R/r
n = 807 / 1
n = 807
SUMMARY:
1. Number of dry cells of 1.5 V required is 40.
2. Number of internal resistance of 1 ohm required is 807
Filtering the homogeneous mixture to get the materials out and boil away any water
Answer: YES !!
Explanation: THAT WOULD BE AMAZING!!!
The transit method requires watching the light output of a star over long periods of time. A transit occurs when the planet crosses in front of its star from earths point of view. Since there is a small object (the planet) now blocking some of the star, it appears to dim a little bit for a while until the planet passes. If we are in a position where that occurs regularly (most paths of planets do not happen to be on the line of sight between earth and their star) we can deduce the period of orbit. From the amount of dimming and the period you can estimate the mass