What is the heat extracted from the cold reservoir for the refrigerator shown in(Figure 1) ? Assume that W1 = -123J and W2 = 88J .
<span>Qc= _________ </span>
<span>Part B
</span>
K=105J
Answer: The energy absorbed by the reaction from the water is 996 Joules.
Explanation:
Energy absorbed by the reaction or energy lost by the water to the reaction,Q.
Mass of the the reaction ,m = 60 g
Specific heat of water = c = 4.15 J\g ^oC
Change is temperature=
Negative sigh indicates that energy was given by the water to the reaction.
The energy absorbed by the reaction from the water is 996 Joules.
Answer:
A. Vx = 3.63 m/s
B. Vy = -45.73 m/s
C. |V| = 45.87 m/s
D. θ = -85.46°
Explanation:
Given that position, r, is given as:
r = 3.63tˆi − 5.73t^2ˆj + 8.16ˆk
Velocity is the derivative of position, r:
V = dr/dt = 3.63 - 11.46t^j
A. x component of velocity, Vx = 3.63 m/s
B. y component of velocity, Vy = -11.46t
t = 3.99 secs,
Vy = - 11.46 * 3.99 = -45.73 m/s
C. Magnitude of velocity, |V| = √[(-45.73)² + 3.63²]
|V| = √(2091.2329 + 13.1769)
|V| = √(2104.4098)
|V| = 45.87 m/s
D. Angle of the velocity relative to the x axis, θ is given as:
tanθ = Vy/Vx
tanθ = -45.73/3.63
tanθ = -12.6
θ = -85.46°
The distance from the Earth to the Sun is 92.96 million mi.
Answer:
Total energy is 170 kJ
Explanation:
Given data:
latent heat of fusion of alcohol is 25 kcal/kg
melting point of alcohol is -114 degree c
specific heat us 0.60 k cal/kg degree c
energy need for 2 kg solid alcohol is
for Melting:
Energy Q is calculated as
Energy, Q = 25 \times 2.0 kg = 50 kJ
Energy required for Heating liquid:
Energy, ΔH = 2.0 kg \times 0.60 \times (100°C) = 120 kJ
Total energy = (50 kJ + 120 kJ) = 170 kJ