Answer:
Q (reaction) = -69.7 kJ
Explanation:
Octane reacts with oxygen to give carbon dioxide and water.
C₈H₁₈ + 25 O₂ ---> 16 CO₂ +18 H₂O
This reaction is exothermic in nature. Therefore, the energy is released into the atmosphere. This reaction took place in a calorimeter, there the temperature (T) increases by 10 C. The heat capacity of the calorimeter is 6.97 kJ/C
The heat (q) of the reaction is calculated as follows:
Q= -cT, where c is the heat capacity of the calorimeter and T is the increase in temperature
q = -(6.97) x (10) = -69.7kJ
<em>Since the heat capacity is given in kilo -joule per degree Celsius, therefore, the mass of octane is not required </em>
Answer: The correct answer is:
Galileo used instruments and experiments to show him what nature was doing, instead of relying on pure logic
Explanation:
Galileo can be considered as one of the precursors of experimentation and the scientific method. A method that doesn't rely on "common sense" and rationalization and logic, but instead is fuelled by a disposition of skepticism and rather makes claims about reality based on experimentation and empirical data shows.
Galileo differed from his predecessors because he actually used and developed instruments and method to reliable measure and observe what nature was doing, instead of relying on pure logic.
a)
Y₀ = initial position of the stone at the time of launch = 0 m
Y = final position of stone = 20.0 meters
a = acceleration = - 9.8 m/s²
v₀ = initial speed of stone at the time of launch = 30.0 m/s
v = final speed = ?
Using the equation
v² = v₀² + 2 a (Y - Y₀)
inserting the values
v² = 30² + 2 (- 9.8) (20 - 0)
v = 22.5 m/s
b)
Y₀ = initial position of the stone at the time of launch = 0 m
Y = maximum height gained
a = acceleration = - 9.8 m/s²
v₀ = initial speed of stone at the time of launch = 30.0 m/s
v = final speed = 0 m/s
Using the equation
v² = v₀² + 2 a (Y - Y₀)
inserting the values
0² = 30² + 2 (- 9.8) (Y - 0)
Y = 46 m
Explanation:
Solar technologies convert sunlight into electrical energy either through photovoltaic (PV) panels or through mirrors that concentrate solar radiation. This energy can be used to generate electricity or be stored in batteries or thermal storage.