Answer:
There are 756.25 electrons present on each sphere.
Explanation:
Given that,
The force of repression between electrons, 
Let the distance between charges, d = 0.2 m
The electric force of repulsion between the electrons is given by :




Let n are the number of excess electrons present on each sphere. It can be calculated using quantization of charges. It is given by :
q = ne


n = 756.25 electrons
So, there are 756.25 electrons present on each sphere. Hence, this is the required solution.
Answer:
D. magnitude and direction
Explanation:
Answer:
the third law (for every action there is an equal and opposite reaction).
Explanation:
The skateboarder pushes backwards on the road (that is he applies a force on the road in a direction opposite the direction of intended motion). By Newton's third law, this action of the skateboarder causes an equal reaction of the road on the skateboarder in the opposite direction. Newton's third law states that action and reaction are equal but opposite in direction. So, the road in response to this backward force pushes the skateboarder in the forward direction causing the skateboarder and the skateboard to move in the forward direction.
The answer is focal point.
The focal length is the distance from the lens (or mirror) to the focal point. The focal point is <span>the point at which rays of light converge.</span>
The weightiness of the added
water displaced is equivalent to the joined weight of the two extra people who come
to be into the boat:
<span>m water g = 2 x 690 N</span>
<span> =
1,380 N</span>
<span>
</span>
The mass of the water displace
is then
<span>m water g = 1,380 N</span>
<span> = 1,380 N / 9.8 m/s^2</span>
<span> = 141 kg</span>
<span>
</span>
Compute the calculation for
density for the volume of water displace and practice this outcome for the mass
of the water displace to get the answer:
<span>p water = mass of water / volume of water</span>
<span>
</span>
<span>volume of water = mass of water / p water</span>
<span> = 141 kg / 1000 kg /m^3 eliminate
kilogram</span>
<span> = 0.14 m^3 the additional volume
of water that is displaced</span>