Answer:
The solution(s) are in order with respect to the attachments
Joules ; 5. Adding the same amount of heat to two different objects will produce the same increase in temperature ; 2. Same speed in both ; 2. A
Explanation:
Diagram 1 ( Liquid Nitrogen ) : So as you can see, we want our units in Joules here, and can therefore multiply the mass of gaseous nitrogen and the latent heat of liquid nitrogen, to cancel the units kg, and receive our solution - in terms of Joules. Let's do it.
q ( energy removed ) = mass of nitrogen
latent heat of liquid nitrogen,
q = 1.3 kg
2.01
10⁵ J / kg =
=
=
=
Joules =
kiloJoules = 2.613
10⁵Joules is the energy that must be removed
Diagram 2 : The same amount of heat does not necessarily mean the same increase in temperature for two different objects. The increase in temperature depends on the specific heat capacity of the substance. Therefore your solution is 5 ) Adding the same amount of heat to two different objects will produce the same increase in temperature.
Diagram 3 : The temperatures in both glasses are the same, and hence the molecules have the same average speed. Therefore your solution is 2 ) Same speed in both.
Diagram 4 : Glass A has more water molecules, and hence has more thermal energy. Your solution is 2 ) A.
1) 0.0011 rad/s
2) 7667 m/s
Explanation:
1)
The angular velocity of an object in circular motion is equal to the rate of change of its angular position. Mathematically:

where
is the angular displacement of the object
t is the time elapsed
is the angular velocity
In this problem, the Hubble telescope completes an entire orbit in 95 minutes. The angle covered in one entire orbit is
rad
And the time taken is

Therefore, the angular velocity of the telescope is

2)
For an object in circular motion, the relationship between angular velocity and linear velocity is given by the equation

where
v is the linear velocity
is the angular velocity
r is the radius of the circular orbit
In this problem:
is the angular velocity of the Hubble telescope
The telescope is at an altitude of
h = 600 km
over the Earth's surface, which has a radius of
R = 6370 km
So the actual radius of the Hubble's orbit is

Therefore, the linear velocity of the telescope is:

Answer:
Any other language I don't know this language
Answer:
The magnification produced by a plane mirror is +1
means then the size of the image is equal to the size of the object. If m has a magnitude greater than 1 the image is larger than the object, and an m with a magnitude less than 1 means the image is smaller than the object.