The water tank waves are transverse waves while the sound waves are longitudinal waves.
<h3>What is a wave?</h3>
A wave is a disturbance along a medium which transfers energy. We know that the water tank waves are transverse waves while the sound waves are longitudinal waves.
The difference between the two is that in the water waves, the direction of the wave motion is perpendicular to the disturbance while in the sound waves, the the direction of the wave motion is parallel to the disturbance.
Learn more about waves:brainly.com/question/16263433?
#SPJ1
The question is oversimplified, and pretty sloppy.
Relative to the Earth . . .
The Moon is in an elliptical orbit around us, with a period of
27.32... days, and with the Earth at one focus of the ellipse.
Relative to the Sun . . .
The Moon is in an elliptical orbit around the Sun, with a period
of 365.24... days, and with the Sun at one focus of the ellipse,
and the Moon itself makes little dimples or squiggles in its orbit
on account of the gravitational influence of the nearby Earth.
I'm sorry if that seems complicated. You know that motion is
always relative to something, and the solar system is not simple.
The answer is 3. Observation
Explanation:
The sentence "The popcorn kernels popped twice as fast as the last batch" is the result of observing or measuring the time popcorn kernels require to pop. In this context, the sentence best matches the word "observation" which the term used in the Scientific method to refer to statements that are the result of studying a phenomenon, either through the senses such as sight or through precise instruments that allow scientists to understand numerically variables such as time, speed, temperature, etc.
The answer to your question is dioxygen carbide
Answer:
Momentum, 
Explanation:
The wave function of a particle is given by :
...............(1)
Where
x is the distance travelled
t is the time taken
k is the propagation constant
is the angular frequency
The relation between the momentum and wavelength is given by :
............(2)
From equation (1),


Use above equation in equation (2) as :

Since, 

So, the x-component of the momentum of the particle is
. Hence, this is the required solution.