1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Art [367]
3 years ago
7

In the circuit shown, the galvanometer shows zero current. The value of resistance R is :

Physics
1 answer:
Tasya [4]3 years ago
8 0

Answer:

its supposed to be (a) 1W

You might be interested in
someone help pls. Two students, Mia and Peter, leave school to meet at the local coffee shop. Peter decides to jog to the coffee
cluponka [151]

Answer:

1) The distance further it takes Peter to arrive at the Coffee shop than Mia is 1.24 km

2) Mia's average speed is 6.00 km/hour

Peter's average speed is 8.48 km/hour

4) Mia's average velocity = Peter's average velocity = 6.00 km/hour

Explanation:

The given information from the diagram are;

The distance Peter jogs from school to the flower shop = 2.00 km

The distance Peter jogs from the Flower shop to the Coffee shop = 2.24 km.

The distance Mia walks from school directly to the Coffee shop = 3.00 km

The time it takes both Peter and Mia to arrive at the coffee shop = 30 minutes = 0.5 hour

1) The total distance Peter travels from school to the Coffee shop = 2.00 km + 2.24 km = 4.24 km

The distance Mia travels from school to the Coffee shop = 3.00 km

The distance further it takes Peter to arrive at the Coffee shop than Mia = 4.24 km - 3.00 km = 1.24 km

The distance further it takes Peter to arrive at the Coffee shop than Mia = 1.24 km

2) Average \ speed = \dfrac{Total \ distance \ traveled}{Total \ time \ taken \  in \ the \ journey}

Therefore, \ Mia's \ average \ speed = \dfrac{3.00 \ km}{0.5 \ hour}= 6.00 \ km/hour

Mia's average speed = 6.00 km/hour

Peter's \ average \ speed = \dfrac{4.24 \ km}{0.5 \ hour}= 8.48 \ km/hour

Peter's average speed = 8.48 km/hour

4) Average \ velocicty = \dfrac{Displacement }{Time  \ taken}

The displacement from the School to the Coffee shop is 3.00 km for both Mia and Peter

The time it takes both Peter and Mia to arrive at the Coffee shop from the school is 30 minutes = 0.5 hour

Therefore, \ Mia's \ average \ velocity = \dfrac{3.00 \ km}{0.5 \ hour}= 6.00 \ km/hour

Mia's average velocity = 6.00 km/hour

Peter's \ average \ velocity = \dfrac{3.00 \ km}{0.5 \ hour}= 6.00 \ km/hour

Therefore, Peter's average velocity is also = 6.00 km/hour

6 0
2 years ago
Witch sentence states Newton third law
Dominik [7]

Answer:

For every action, there is an equal and opposite reaction.

Explanation:

Physics helps alot lol

7 0
3 years ago
Suppose you wish to fabricate a uniform wire out of 1.10 g of copper. If the wire is to have a resistance R = 0.390 Ω, and if al
Citrus2011 [14]

To solve this problem we will apply the concepts related to volume, as a function of length and area, as of mass and density. Later we will take the same concept of resistance and resistivity, equal to the length per unit area. Once obtained from the known constants it will be possible to obtain the area by matching the two equations:

Mass of copper wire(m) = 1.10g = 1.10*10^{-3} kg

Density (\rho)= 8.92*10^3kg/m^3

Resistively of copper (\gamma) = 1.7*10^{-8}\Omega \cdot m

Resistance (R) = 0.390\Omega

Volume is defined as,

V= lA \text{ and }\frac{m}{\rho}

lA= \frac{1.10*10^{-3}}{8.92*10^3}

lA = 1.233*10^{-7} m^3 (1)

We know that,

\frac{l}{A} = \frac{R}{\gamma}

\frac{l}{A}= \frac{0.390\Omega}{1.7*10^{-8}\Omega m}

\frac{l}{A} = 2.2941*10^7 m^{-1} (2)

Multiplying equation we have

l^2 = (1.233*10^{-7})( 2.2941*10^7)

l^2 = 2.8286m^2

l =\sqrt{2.8286m^2}

l = 1.68m

Therefore the length of the wire is 1.68m

6 0
2 years ago
Bryce, a mouse lover, keeps his four pet mice in a roomy cage, where they spend much of their spare time (when they are not slee
user100 [1]

Answer:

I₁ = (7.78 i ^ - 6.71 j ^) 10⁻³ J s ,  I₂ = (-12.5 i ^ -14.6 j ^) 10⁻³ J s ,  I₃ = (19.1i ^ + 18.6 j ^) 10⁻³ J s  and I₄ = (-9.14i ^ + 7.24 j ^) 10⁻³ J s

Explanation:

The impulse is equal to the variation of the moment, to apply this relationship to our case, we will assume that initially the mouse was at rest

    I = Δp = m v_{f} -m v₀

    I = m (v_{f}  -v₀)

Bold indicates vector quantities, let's calculate the momentum of each mouse in for the x and y axes

We recommend bringing all units to the SI system

Mouse 1.

It has a mass of 22.3 g = 22.3 10⁻³ kg, a final velocity of (v = 0.349 i ^ - 0.301 j ^) m / s with an initial velocity of zero

    Iₓ = m (v_{fx}  - v₀ₓ)

    Iₓ = 22.3 10⁻³ (0.349 -0)

    Iₓ = 7.78 10⁻³ J s

   I_{y} = m (v_{fy}  -v_{oy} )

   I_{y} = 22.3 10⁻³ (-0.301)

   I_{y} = -6.71 10⁻³ J s

   I₁ = (7.78 i ^ - 6.71 j ^) 10⁻³ J s

Mouse 2

Mass 17.9 g = 17.9 10⁻³ kg

Speed ​​(-0.699 i ^ - 0.815 j ^) m / s

    Iₓ = m (v_{fx}  - v₀ₓ)

    Iₓ = 17.9 10⁻³ (-0.699 -0)

    Iₓ = -12.5 10⁻³ J s

    I_{y} = 17.9 10⁻³ (-0.815 - 0)

    I_{y} = -14.6 10⁻³ J s

   I₂ = (-12.5 i ^ -14.6 j ^) 10⁻³ J s

Mouse 3

Mass 19.1 g = 19.1 10⁻³ kg

Speed ​​(0.745i ^ + 0.975 j ^) m / s

    Iₓ = 19.1 10⁻³ (0.745 -0)

    Iₓ = 14.2 10⁻³ J s

    I_{y} = 19.1 10⁻³(0.975 -0)

    I_{y} = 18.6 10⁻³ J s

    I₃ = (19.1i ^ + 18.6 j ^) 10⁻³ J s

Mouse 4

Mass 10.1 g = 10.1 10⁻³ kg

Speed ​​(-0.905i ^ + 0.717j ^) m / s

    Iₓ = 10.1 10⁻³ (-0.905 -0)

    Iₓ = -9.14 10⁻³ J s

    I_{y} = 10.1 10⁻³ (0.717 -0)

    I_{y} = 7.24 10⁻³ J s

   I₄ = (-9.14i ^ + 7.24 j ^) 10⁻³ J s

8 0
3 years ago
Which of the four spheres is this pictures/scene?
Zigmanuir [339]

I believe the correct answer is atmosphere (D).

7 0
2 years ago
Read 2 more answers
Other questions:
  • What does frequency mean in science
    10·2 answers
  • A thermometer is randomly selected and tested. Draw a sketch and find the temperature reading corresponding to Upper P 89​, the
    10·1 answer
  • On a hot summer day, you turn the thermostat in your house way down. Assume that your house is well sealed and that no air enter
    13·1 answer
  • Juggles the clown stands on one end of a teeter-totter at rest on the ground. Bangles the clown jumps off a platform 2.4 m above
    9·1 answer
  • Imagine you are holding a small ball below you so that you look down on its "north pole." turn the ball in a counterclockwise di
    15·1 answer
  • Maria and Miquel were enjoying the fireworks when they got into a chemistry argument. Maria insisted that the fireworks were the
    11·2 answers
  • Star A and Star B have different apparent brightnesses but identical luminosities. Star A is 10 light years away from earth and
    6·1 answer
  • Convert gravitational potential energy to kinetic energy.
    6·1 answer
  • What are the characteristics of high energy waves?
    8·2 answers
  • Please help ASAP- A book has a mass of 5 kg, a baby has a mass of 5 kg. Which one weighs more?
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!