Answer:
Kf = 1.11x10¹³
Explanation:
The value of Kf for a multistep process that involves an equilibrium at each step, is the multiplication of the constant of the equilibrium of each step.
Kf = K1xK2xK3xK4
Kf = 1.90x10⁴ x 3.90x10³ x 1.00x10³ x 1.50x10²
Kf = 1.11x10¹³
Answer:
64,433.6 Joules
Explanation:
<u>We are given</u>;
- Volume of water as 220 mL
- Initial temperature as 30°C
- Final temperature as 100°C
- Specific heat capacity of water as 4.184 J/g°C
We are required to calculate the amount of heat required to raise the temperature.
- We know that amount of heat is calculated by;
Q = mcΔT , where m is the mass, c is the specific heat, ΔT is the change in temperature.
Density of water is 1 g/mL
Thus, mass of water is 220 g
ΔT = 100°C - 30°C
= 70°C
Therefore;
Amount of heat, Q = 220g × 4.184 J/g°C × 70°C
= 64,433.6 Joules
Thus, the amount of heat required to raise the temperature of water is 64,433.6 Joules
Hydrologists primarily study water, i think
Answer:
Hi Im an online tutor and i can assist you with all your assignments. We have experts in all fields. check out our website https://toplivewriters.com/
Explanation:
The balanced chemical reaction would be:
2H2 + O2 = 2H2O
We are given the amount of oxygen to react with hydrogen. To determine the amount of hydrogen needed for the oxygen to completely react, we use the balanced reaction to relate the substances. We do as follows:
64 g O2 ( 1 mol / 32 g ) ( 2 mol H2 / 1 mol O2 ) ( 2.02 g / 1 mol ) = 8.08 g of hydrogen gas needed