Answer:
I think its the first one. unless there is more to the question
Answer:
There are many reasons to examine human cells and tissues under the microscope. Medical and biological research is underpinned by knowledge of the normal structure and function of cells and tissues and the organs and structures that they make up. In the normal healthy state, the cells and other tissue elements are arranged in regular, recognizable patterns. Changes induced by a wide range of chemical and physical influences are reflected by alterations in the structure at a microscopic level, and many diseases are characterized by typical structural and chemical abnormalities that differ from the normal state. Identifying these changes and linking them to particular diseases is the basis of histopathology and cytopathology, important specializations of modern medicine. Microscopy plays an important part in haematology (the study of blood), microbiology (the study of microorganisms including parasites and viruses), and more broadly in the areas of biology, zoology, and botany. In all these disciplines, specimens are examined under a microscope.
<em><u>hope</u></em><em><u> </u></em><em><u>it</u></em><em><u> </u></em><em><u>helps</u></em><em><u> </u></em>
True, all matter has mass and takes up space.
Answer:
15.438g H2O
Explanation:
First you need to find the reaction equation:
2H2O+2Na=2NaOH + H2
Hydrogen is a diatomic molecule so it will have a subscript of 2 on the right hand side. From there we can balance the reaction.
Then we can use stoichiometry:
34.2g NaOH * (1 mol NaOH/39.908g NaOH) * (2 mol H2O/2 mol NaOH) * (18.015g H2O/1 mol H20) = 15.438g H2O
It is important that when you use stoichiometry that all your units cancel out until you only have the unit you want.
Over the ocean, the temperature rises much slower, because the water evaporates causing the hot molecules to go into the atmosphere, and the overall temperature of the water doesn't increase much, this causes the area without the water to be much hotter.