Answer: The molarity of KBr in the final solution is 1.42M
Explanation:
We can calculate the molarity of the KBr in the final solution by dividing the total number of moles of KBr in the solution by the final volume of the solution.
We will first calculate the number of moles of KBr in the individual sample before mixing together
In the first sample:
Volume (V) = 35.0 mL
Concentration (C) = 1.00M
Number of moles (n) = C × V
n = (35.0mL × 1.00M)
n= 35.0mmol
For the second sample
V = 60.0 mL
C = 0.600 M
n = (60.0 mL × 0.600 M)
n = 36.0mmol
Therefore, we have (35.0 + 36.0)mmol in the final solution
Number of moles of KBr in final solution (n) = 71.0mmol
Now, to get the molarity of the final solution , we will divide the total number of moles of KBr in the solution by the final volume of the solution after evaporation.
Therefore,
Final volume of solution (V) = 50mL
Number of moles of KBr in final solution (n) = 71.0mmol
From
C = n / V
C= 71.0mmol/50mL
C = 1.42M
Therefore, the molarity of KBr in the final solution is 1.42M
Yes, it is possible to go do because it would be 2 stacks of 6
Answer:
2Li + F₂ → 2LiF
Explanation:
The reaction expression is given as:
Li + F₂ → LiF
We are to balance the expression. In that case, the number of atoms on both sides of the expression must be the same.
Let use a mathematical approach to solve this problem;
Assign variables a,b and c as the coefficients that will balance the expression:
aLi + bF₂ → cLiF
Conserving Li: a = c
F: 2b = c
let a = 1, c = 1 and b =
Multiply through by 2;
a = 2, b = 1 and c = 2
2Li + F₂ → 2LiF