Answer:
3
Step-by-step explanation:
Answer: I DONT KNOW
Explanation: SORRY
Answer:
4.002 x 10^3
Step-by-step explanation:
Answer:
Numerator = 2(b^2+a^2) or equivalently 2b^2+2a^2
Denominator = (b+a)^2*(b-a), or equivalently b^3+ab^2-a^2b0-a^3
Step-by-step explanation:
Let
S = 2b/(b+a)^2 + 2a/(b^2-a^2) factor denominator
= 2b/(b+a)^2 + 2a/((b+a)(b-a)) factor denominators
= 1/(b+a) ( 2b/(b+a) + 2a/(b-a)) find common denominator
= 1/(b+a) ((2b*(b-a) + 2a*(b+a))/((b+a)(b-a)) expand
= 1/(b+a)(2b^2-2ab+2ab+2a^2)/((b+a)(b-a)) simplify & factor
= 2/(b+a)(b^2+a^2)/((b+a)(b-a)) simplify & rearrange
= 2(b^2+a^2)/((b+a)^2(b-a))
Numerator = 2(b^2+a^2) or equivalently 2b^2+2a^2
Denominator = (b+a)^2*(b-a), or equivalently b^3+ab^2-a^2b0-a^3
Answer:
a. 1/13
b. 1/52
c. 2/13
d. 1/2
e. 15/26
f. 17/52
g. 1/2
Step-by-step explanation:
a. In a deck of cards, there are 4 suits and each of them has a 7. Therefore, the probability of drawing a 7 is:
P(7) = 4/52 = 1/13
b. There is only one 6 of clubs, therefore, the probability of drawing a 6 of clubs is:
P(6 of clubs) = 1/52
c. There 4 fives (one for each suit) and 4 queens in a deck of cards. Therefore, the probability of drawing a five or a queen is:
P(5 or Q) = P(5) + P(Q)
= 4/52 + 4/52
= 1/13 + 1/13
P(5 or Q) = 2/13
d. There are 2 suits that are black. Each suit has 13 cards. Therefore, there are 26 black cards. The probability of drawing a black card is:
P(B) = 26/52 = 1/2
e. There are 2 suits that are red. Each suit has 13 cards. Therefore, there are 26 red cards. There are 4 jacks. Therefore:
P(R or J) = P(R) + P(J)
= 26/52 + 4/52
= 30/52
P(R or J) = 15/26
f. There are 13 cards in clubs suit and there are 4 aces, therefore:
P(C or A) = P(C) + P(A)
= 13/52 + 4/52
P(C or A) = 17/52
g. There are 13 cards in the diamonds suit and there are 13 in the spades suit, therefore:
P(D or S) = P(D) + P(S)
= 13/52 + 13/52
= 26/52
P(D or S) = 1/2