Answer:
Reaction 1: Kc increases
Reaction 2: Kc decreases
Reaction 3: The is no change
Explanation:
Let us consider the following reactions:
Reaction 1: A ⇌ 2B ΔH° = 20.0 kJ/mol
Reaction 2: A + B ⇌ C ΔH° = −5.4 kJ/mol
Reaction 3: 2A⇌ B ΔH° = 0.0 kJ/mol
To predict what will happen when the temperature is raised we need to take into account Le Chatelier Principle: when a system at equilibrium suffers a perturbation, it will shift its equilibrium to counteract such perturbation. This means that <em>if the temperature is raised (perturbation), the system will react to lower the temperature.</em>
Reaction 1 is endothermic (ΔH° > 0). If the temperature is raised the system will favor the forward reaction to absorb heat and lower the temperature, thus increasing the value of Kc.
Reaction 2 is exothermic (ΔH° < 0). If the temperature is raised the system will favor the reverse reaction to absorb heat and lower the temperature, thus decreasing the value of Kc.
Reaction 3 is not endothermic nor exothermic (ΔH° = 0) so an increase in the temperature will have no effect on the equilibrium.
Answer:
267.57 kPa
Explanation:
Ideal gas law:
PV = n RT R = 8.314462 L-kPa/K-mol
P (16.5) = 1.5 (8.314462)(354) P = 267.57 kPa
Answer:
pH = 10.75
Explanation:
To solve this problem, we must find the molarity of [OH⁻]. With the molarity we can find the pOH = -log[OH⁻]
Using the equation:
pH = 14 - pOH
We can find the pH of the solution.
The molarity of Ca(OH)₂ is 2.8x10⁻⁴M, as there are 2 moles of OH⁻ in 1 mole of Ca(OH)₂, the molarity of [OH⁻] is 2*2.8x10⁻⁴M = 5.6x10⁻⁴M
pOH is
pOH = -log 5.6x10⁻⁴M
pOH = 3.25
pH = 14-pOH
<h3>pH = 10.75</h3>
Answer: OH−.
Explanation: Hydroxide, any chemical compound containing one or more groups, each comprising one atom each of oxygen and hydrogen bonded together and functioning as the negatively charged ion OH-.
The heat required to raise the temperature to a specific temperature change of a sample is related to the specific heat capacity of the substance. In this case, the heat can be calculated through mCpΔT = 350 g * 0.39 J/g C *25 C. This is equal to 3412. 5 Joules. Closest answer is C.